找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Discretization Methods for Ordinary Differential Equations; Hans J. Stetter Book 1973 Springer-Verlag Berlin Heidelberg 1973 A

[復(fù)制鏈接]
樓主: Hoover
21#
發(fā)表于 2025-3-25 04:28:10 | 只看該作者
22#
發(fā)表于 2025-3-25 07:34:03 | 只看該作者
23#
發(fā)表于 2025-3-25 13:11:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:33:47 | 只看該作者
Linear Multistep Methods,ituation is sufficiently interesting and by no means trivial. Many of the results obtained will serve as background material in the treatment of more general classes of multistep methods in Chapter 5.
25#
發(fā)表于 2025-3-25 21:54:44 | 只看該作者
https://doi.org/10.1007/978-3-662-36828-2nd their applications, although we have not elaborated on this. The chapter is concluded by a few remarks on the practical aspects of “solving” ordinary differential equations by discretization methods.
26#
發(fā)表于 2025-3-26 03:11:05 | 只看該作者
27#
發(fā)表于 2025-3-26 05:18:02 | 只看該作者
Lisa Unterberg,Miguel Zulaica y Mugicaituation is sufficiently interesting and by no means trivial. Many of the results obtained will serve as background material in the treatment of more general classes of multistep methods in Chapter 5.
28#
發(fā)表于 2025-3-26 09:10:02 | 只看該作者
Book 1973ical values of solutions to differential equations. Nearly all approaches to this task involve a "finitization" of the original differential equation problem, usually by a projection into a finite-dimensional space. By far the most popular of these finitization processes consists of a reduction to a
29#
發(fā)表于 2025-3-26 15:36:14 | 只看該作者
Analysis of Discretization Methods for Ordinary Differential Equations
30#
發(fā)表于 2025-3-26 19:02:41 | 只看該作者
Book 1973heir discrete analogues is a very hard subject, and progress is consequently slow, the initial value problem for a system of first order ordinary differential equations lends itself so naturally to discretization that hundreds of numerical analysts have felt inspired to invent an ever-increasing num
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴彦淖尔市| 即墨市| 上高县| 承德县| 阿克苏市| 鄂尔多斯市| 龙川县| 姚安县| 泰来县| 措勤县| 黎川县| 灵武市| 达州市| 澎湖县| 肥城市| 乌鲁木齐县| 叙永县| 垣曲县| 原阳县| 镇安县| 闸北区| 富源县| 英吉沙县| 五寨县| 洮南市| 永兴县| 新竹市| 上饶市| 杭州市| 牟定县| 黄骅市| 安吉县| 林州市| 天柱县| 云龙县| 汨罗市| 中宁县| 梓潼县| 巫山县| 库车县| 丰宁|