找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Topology in Nonlinear Differential Equations; A Tribute to Bernhar Djairo G Figueiredo,Jo?o Marcos do ó,Carlos Tomei Book 2014

[復制鏈接]
樓主: 和善
51#
發(fā)表于 2025-3-30 09:48:51 | 只看該作者
,Multiplicity of Positive Solutions for an Obstacle Problem in ?,In this paper we establish the existence of two positive solutions for the obstacle problem . where f is a continuous function verifying some technical conditions and . is the convex set given by . with . having nontrivial positive part with compact support in .
52#
發(fā)表于 2025-3-30 14:06:38 | 只看該作者
53#
發(fā)表于 2025-3-30 19:48:14 | 只看該作者
54#
發(fā)表于 2025-3-30 22:19:33 | 只看該作者
, Solutions in Some Borderline Cases of Elliptic Equations with Degenerate Coercivity,Abstract. We study a degenerate elliptic equation, proving existence results of distributional solutions in some borderline cases.
55#
發(fā)表于 2025-3-31 02:08:09 | 只看該作者
56#
發(fā)表于 2025-3-31 08:53:27 | 只看該作者
,Some Weighted Inequalities of Trudinger–Moser Type,We discuss some extensions of the Trudinger–Moser inequality in a special case of weighted Sobolev spaces
57#
發(fā)表于 2025-3-31 13:05:10 | 只看該作者
58#
發(fā)表于 2025-3-31 16:29:56 | 只看該作者
,On a Resonant Lane–Emden Problem,We study the asymptotic behavior, as q → p, of the positive solutions of the Lane–Emden problem . where . is a bounded and smooth domain . is the first eigenvalue of the p-Laplacian operator . We prove that any family of positive solutions of this problem converges in . to the function .
59#
發(fā)表于 2025-3-31 17:33:42 | 只看該作者
,A Note on the Existence of a Positive Solution for a Non-autonomous Schr?dinger–Poisson System,We consider the system . where 3 < p < 5 and the potentials . has finite limits as . By imposing some conditions on the decay rate of the potentials we obtain the existence of a ground state solution. In the proof we apply variational methods.
60#
發(fā)表于 2025-4-1 01:11:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 22:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
田林县| 南平市| 瑞丽市| 寿阳县| 新乐市| 台安县| 延川县| 福清市| 佛山市| 息烽县| 鹿邑县| 游戏| 敦煌市| 德钦县| 彭水| 静安区| 六安市| 四子王旗| 施秉县| 无为县| 旅游| 金平| 龙川县| 台南县| 基隆市| 祁连县| 彩票| 普格县| 区。| 乌兰察布市| 星子县| 遵化市| 乃东县| 敦煌市| 蒲江县| 宜兴市| 孟村| 磐安县| 宜兰县| 沧州市| 龙里县|