找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Topology in Nonlinear Differential Equations; A Tribute to Bernhar Djairo G Figueiredo,Jo?o Marcos do ó,Carlos Tomei Book 2014

[復(fù)制鏈接]
樓主: 和善
11#
發(fā)表于 2025-3-23 12:37:59 | 只看該作者
1421-1750 of articles presented at the Workshop for Nonlinear Analysis held in Jo?o Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many
12#
發(fā)表于 2025-3-23 14:04:36 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:10 | 只看該作者
Analysis and Topology in Nonlinear Differential EquationsA Tribute to Bernhar
14#
發(fā)表于 2025-3-23 23:06:12 | 只看該作者
1421-1750 tical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.978-3-319-38032-2978-3-319-04214-5Series ISSN 1421-1750 Series E-ISSN 2374-0280
15#
發(fā)表于 2025-3-24 05:13:47 | 只看該作者
Djairo G Figueiredo,Jo?o Marcos do ó,Carlos TomeiGrowing vital area of mathematics.Anniversary volume dedicated to Bernhard Ruf.Includes supplementary material:
16#
發(fā)表于 2025-3-24 06:59:23 | 只看該作者
17#
發(fā)表于 2025-3-24 13:40:46 | 只看該作者
18#
發(fā)表于 2025-3-24 18:25:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:39:52 | 只看該作者
https://doi.org/10.1007/978-3-662-06736-9tional problems. With this purpose, we prove a slice theorem for continuous affine actions of a (finite-dimensional) Lie group on Banach manifolds. As an application, we discuss equivariant bifurcation of constant mean curvature hypersurfaces, providing a few concrete examples and counter-examples.
20#
發(fā)表于 2025-3-25 00:13:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 13:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝坻区| 家居| 广州市| 闵行区| 于都县| 成武县| 墨竹工卡县| 宕昌县| 上杭县| 东平县| 富川| 博乐市| 定远县| 枝江市| 云浮市| 纳雍县| 通许县| 镇雄县| 宜城市| 宁乡县| 大同市| 邵阳县| 张家口市| 老河口市| 奇台县| 彭泽县| 通许县| 津南区| 南丹县| 龙陵县| 光山县| 三门峡市| 任丘市| 光山县| 磐安县| 霍林郭勒市| 年辖:市辖区| 肥乡县| 汨罗市| 沙湾县| 丰台区|