找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Simulation of Chaotic Systems; Frank C. Hoppensteadt Textbook 19931st edition Springer Science+Business Media New York 1993 C

[復(fù)制鏈接]
樓主: irritants
21#
發(fā)表于 2025-3-25 06:59:31 | 只看該作者
22#
發(fā)表于 2025-3-25 07:48:27 | 只看該作者
Digital Video: An Introduction to MPEG-2Regular perturbation methods are based on Taylor’s formula and on implicit function theorems. However, there are many problems to which Taylor’s formula cannot be applied directly, in which case perturbation methods based on multiple time or space scales can often be used, sometimes even for chaotic systems.
23#
發(fā)表于 2025-3-25 15:00:43 | 只看該作者
24#
發(fā)表于 2025-3-25 17:29:14 | 只看該作者
25#
發(fā)表于 2025-3-25 21:44:48 | 只看該作者
26#
發(fā)表于 2025-3-26 03:52:08 | 只看該作者
27#
發(fā)表于 2025-3-26 04:37:53 | 只看該作者
Methods of AveragingRegular perturbation methods are based on Taylor’s formula and on implicit function theorems. However, there are many problems to which Taylor’s formula cannot be applied directly, in which case perturbation methods based on multiple time or space scales can often be used, sometimes even for chaotic systems.
28#
發(fā)表于 2025-3-26 09:50:39 | 只看該作者
29#
發(fā)表于 2025-3-26 14:56:48 | 只看該作者
Analysis and Simulation of Chaotic Systems978-1-4757-2275-8Series ISSN 0066-5452 Series E-ISSN 2196-968X
30#
發(fā)表于 2025-3-26 20:44:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿鲁科尔沁旗| 揭阳市| 花莲县| 清徐县| 青海省| 青岛市| 牙克石市| 皋兰县| 嵊泗县| 合肥市| 资中县| 昌乐县| 揭西县| 广安市| 平顺县| 龙胜| 芦溪县| 保德县| 黔江区| 嵊州市| 仁布县| 临江市| 剑川县| 铁力市| 旬邑县| 永平县| 井陉县| 肇庆市| 息烽县| 盘锦市| 安乡县| 竹北市| 庆元县| 吉林市| 阿拉善左旗| 榆林市| 台江县| 芒康县| 东乌珠穆沁旗| 平南县| 叙永县|