找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional; Proceedings of the 1 R. F. Curtain,A.

[復制鏈接]
樓主: 萌芽的心
11#
發(fā)表于 2025-3-23 12:20:23 | 只看該作者
https://doi.org/10.1007/978-3-319-70491-3In particular, using Nevanlinna-Pick interpolation we indicate how to solve the gain and phase margin problems for both lumped and distributed parameter systems. Moreover using skew Toeplitz theory, we will indicate the solution of the standard problem for a broad class of distributed parameter plants.
12#
發(fā)表于 2025-3-23 15:13:30 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:32 | 只看該作者
Digital Culture for Optimizationquations are obtained for the optimal estimate ( conditional expectation ) and covariance operator in both integral and differential forms. A separate section is devoted to the case of discrete observations. For instance, the filtering problem for the heat equation is investigated.
14#
發(fā)表于 2025-3-23 23:38:13 | 只看該作者
15#
發(fā)表于 2025-3-24 05:56:46 | 只看該作者
A state-space approach to ,,-control problems for infinite-dimensional systems, complete generalization of the finite-dimensional result: the problem is solvable if and only if two coupled Riccati equations have stabilizing solutions; all sub-optimal controllers can be parametrized in terms of these solutions.
16#
發(fā)表于 2025-3-24 06:52:14 | 只看該作者
Infinite dimensional system transfer functions,esoer, is studied in some detail. Moreover, one indicates the relationship between this algebra and semigroup Hilbert state space linear systems with finite rank bounded sensing and control. The theory is illustrated by several examples.
17#
發(fā)表于 2025-3-24 12:48:16 | 只看該作者
18#
發(fā)表于 2025-3-24 15:46:26 | 只看該作者
19#
發(fā)表于 2025-3-24 19:37:17 | 只看該作者
20#
發(fā)表于 2025-3-24 23:30:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
清新县| 湘西| 深泽县| 平远县| 太谷县| 广丰县| 弥渡县| 呼和浩特市| 平山县| 丰顺县| 石林| 筠连县| 灵山县| 双牌县| 黎川县| 大兴区| 尼木县| 禹城市| 读书| 五华县| 镇原县| 赣州市| 新宁县| 宁晋县| 舒兰市| 巴青县| 育儿| 武城县| 桂东县| 镇原县| 阿图什市| 大埔县| 长宁县| 永平县| 台北县| 双辽市| 旺苍县| 彭阳县| 延寿县| 天门市| 错那县|