找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Operator Theory; Dedicated in Memory Themistocles M. Rassias,Valentin A. Zagrebnov Book 2019 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: exterminate
51#
發(fā)表于 2025-3-30 12:14:21 | 只看該作者
52#
發(fā)表于 2025-3-30 14:12:06 | 只看該作者
53#
發(fā)表于 2025-3-30 17:18:25 | 只看該作者
54#
發(fā)表于 2025-3-30 21:02:32 | 只看該作者
Exact Solutions to Problems with Perturbed Differential and Boundary Operators,hat the exact solution for the differential operator with conventional boundary conditions is known. We apply this perturbation method to solve partial integro-differential, or loaded differential, equations with nonlocal, or integral, boundary conditions.
55#
發(fā)表于 2025-3-31 04:17:33 | 只看該作者
56#
發(fā)表于 2025-3-31 07:32:26 | 只看該作者
57#
發(fā)表于 2025-3-31 11:24:42 | 只看該作者
58#
發(fā)表于 2025-3-31 14:48:55 | 只看該作者
Norm Conditions for Separability in ,me conditions on suitable norms of . which guarantee its separability. Even when separability of . is guaranteed by some method, its separable decomposition itself is difficult to construct. We present a general condition which makes it possible to find a way of an explicit separable decomposition.
59#
發(fā)表于 2025-3-31 17:36:03 | 只看該作者
,Kato’s Inequality,ps on . (holomorphy and closedness of ., the test functions are a core) with the same elegant argument Kato gave, but extending the results to possibly non-symmetric elliptic operators. In the second part, we consider the Dirichlet problem .where . and . is a bounded Wiener regular set. Well-posedne
60#
發(fā)表于 2025-4-1 00:18:58 | 只看該作者
On the Border Lines Between the Regions of Distinct Solution Type for Solutions of the Friedmann Equation with positive cosmological constant, where radiation and matter do not couple (see e.g. Baumg?rtel in Journal of Mathematical Physics 122505, 2012, [.]). In that paper, the system of case distinction parameters contains a “critical radiation parameter” .. The present note contains the constru
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙游县| 湾仔区| 夏邑县| 盖州市| 南城县| 丰城市| 集贤县| 松潘县| 江陵县| 孝义市| 内江市| 大安市| 钟祥市| 教育| 丹凤县| 辽中县| 棋牌| 揭阳市| 涟水县| 聂拉木县| 洛宁县| 宁明县| 平安县| 老河口市| 贵定县| 高清| 禄劝| 山阴县| 枣阳市| 贵港市| 色达县| 额尔古纳市| 衡水市| 江门市| 原阳县| 余干县| 铜川市| 聂拉木县| 桐梓县| 商洛市| 浮山县|