找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Design of Nonlinear Control Systems; Daizhan Cheng,Xiaoming Hu,Tielong Shen Book 2010 Springer-Verlag Berlin Heidelberg 2010

[復(fù)制鏈接]
樓主: Destruct
11#
發(fā)表于 2025-3-23 11:34:39 | 只看該作者
https://doi.org/10.1007/978-3-642-92097-4d in Section 14.2 and the design principle for linear systems is introduced. Section 14.3 focuses on the ..- gain synthesis problem for nonlinear systems. In Section 14.4, a constructive design approach is presented. Finally, some application examples are presented to illustrate the design techniques in Section 14.5.
12#
發(fā)表于 2025-3-23 16:29:43 | 只看該作者
13#
發(fā)表于 2025-3-23 18:58:40 | 只看該作者
Algebra, Lie Group and Lie Algebra,gebra are introduced briefly in section 4.2. As a tool, homotopy is investigated in section 4.3. Sections 4.4 and 4.5 contain some primary knowledge about algebraic topology, such as fundamental group, covering space etc. In sections 4.6 and 4.7, Lie group and its Lie algebra are discussed. Section 4.8 considers the structure of Lie algebra.
14#
發(fā)表于 2025-3-24 01:35:48 | 只看該作者
Controllability and Observability,related to their controllability [1, 3, 8]. The Kalman decomposition of nonlinear systems is investigated in section 5.3. This section is based on [2]. We refer to [6, 7] for decomposition of nonlinear control systems.
15#
發(fā)表于 2025-3-24 03:56:05 | 只看該作者
16#
發(fā)表于 2025-3-24 10:05:29 | 只看該作者
Dissipative Systems,Based on these conditions, the controller design problem is investigated in Section 13.3. Finally, two classes of main dissipative systems, mainly Lagrange systems and Hamiltonian systems are studied in Section 13.4 and Section 13.5 respectively.
17#
發(fā)表于 2025-3-24 14:43:08 | 只看該作者
,,-Gain Synthesis,d in Section 14.2 and the design principle for linear systems is introduced. Section 14.3 focuses on the ..- gain synthesis problem for nonlinear systems. In Section 14.4, a constructive design approach is presented. Finally, some application examples are presented to illustrate the design techniques in Section 14.5.
18#
發(fā)表于 2025-3-24 17:49:53 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:00 | 只看該作者
20#
發(fā)表于 2025-3-25 02:41:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 05:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花垣县| 威宁| 天峻县| 五原县| 宁乡县| 疏勒县| 崇州市| 巧家县| 镇原县| 东城区| 武城县| 合阳县| 丰原市| 鲜城| 静安区| 临沧市| 宜章县| 仁怀市| 武宁县| 浦东新区| 商河县| 宁化县| 富平县| 聂荣县| 从化市| 勃利县| 固始县| 徐水县| 广西| 措美县| 洛阳市| 延安市| 桃源县| 丹寨县| 容城县| 奈曼旗| 资兴市| 绥德县| 万山特区| 确山县| 于都县|