找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Analysis and Applications - ISAAC 2001; Heinrich G. W. Begehr,Robert P. Gilbert,Man Wah Wo Book 2003 Springer Science+Business Media Dordr

[復(fù)制鏈接]
樓主: Hazardous
61#
發(fā)表于 2025-4-1 02:25:55 | 只看該作者
62#
發(fā)表于 2025-4-1 07:00:20 | 只看該作者
Analytic Functions and Analytic Functionals on Some Balls in the Complex Euclidean Space,n [1], [2] and [3] for the Lie ball, the complex Euclidean ball and the dual Lie ball can be generalized for the ..-balls. In this note, following our paper [4], we consider analytic functions and analytic functionals on the ..-balls ., and characterize them by their growth behavior of their harmonic components in their double series expansion.
63#
發(fā)表于 2025-4-1 10:39:49 | 只看該作者
Carleman Estimates for a Plate Equation on a Riemann Manifold with Energy Level Terms,onal Riemann manifold (., .). The energy level for this problem is ..(Ω) × ..(Ω). The basic assumption made is the existence of a strictly convex function on Ω. Carleman estimates are also a critical springboard from which one may derive the . inequalities of continuous observability/uniform stabilization of interest in control theory of PDEs.
64#
發(fā)表于 2025-4-1 16:45:47 | 只看該作者
Hyperbolicity for Systems, for any lower order terms (strong hyperbolicity), or for which systems the Cauchy problem is .. well posed (hyperbolicity). We here present a survey of the subject, in particular focussing the interests on the necessary conditions for strong hyperbolicity or just hyperbolicity.
65#
發(fā)表于 2025-4-1 20:16:12 | 只看該作者
66#
發(fā)表于 2025-4-2 01:33:47 | 只看該作者
67#
發(fā)表于 2025-4-2 05:31:10 | 只看該作者
Nevanlinna Theory in Characteristic , and Applications,tic . ≥ 0 and characterise all solutions when it has constant coefficients: this generalizes previous results in characteristic zero but with a more general form involving polynomials with a zero derivative. Proofs are given in a preprint where applications to the .-problem are also obtained.
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五常市| 湾仔区| 长武县| 连平县| 信丰县| 调兵山市| 德兴市| 乐都县| 赤峰市| 贺州市| 井冈山市| 汉中市| 横峰县| 中江县| 剑川县| 屯昌县| 钦州市| 桂林市| 紫金县| 双流县| 平南县| 任丘市| 南城县| 保山市| 安平县| 丽水市| 光山县| 新竹县| 松滋市| 周口市| 荣成市| 高台县| 会宁县| 鄢陵县| 西乌珠穆沁旗| 屏边| 娱乐| 刚察县| 江津市| 大港区| 平阳县|