找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis IV; Linear and Boundary V. G. Maz’ya,S. M. Nikol’ski? Book 1991 Springer-Verlag Berlin Heidelberg 1991 Integralgleichungen.Nichts

[復(fù)制鏈接]
查看: 49921|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:17:38 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Analysis IV
期刊簡稱Linear and Boundary
影響因子2023V. G. Maz’ya,S. M. Nikol’ski?
視頻videohttp://file.papertrans.cn/157/156140/156140.mp4
學(xué)科分類Encyclopaedia of Mathematical Sciences
圖書封面Titlebook: Analysis IV; Linear and Boundary  V. G. Maz’ya,S. M. Nikol’ski? Book 1991 Springer-Verlag Berlin Heidelberg 1991 Integralgleichungen.Nichts
影響因子A linear integral equation is an equation of the form XEX. (1) 2a(x)cp(x) - Ix k(x, y)cp(y)dv(y) = f(x), Here (X, v) is a measure space with a-finite measure v, 2 is a complex parameter, and a, k, f are given (complex-valued) functions, which are referred to as the coefficient, the kernel, and the free term (or the right-hand side) of equation (1), respectively. The problem consists in determining the parameter 2 and the unknown function cp such that equation (1) is satisfied for almost all x E X (or even for all x E X if, for instance, the integral is understood in the sense of Riemann). In the case f = 0, the equation (1) is called homogeneous, otherwise it is called inhomogeneous. If a and k are matrix functions and, accordingly, cp and f are vector-valued functions, then (1) is referred to as a system of integral equations. Integral equations of the form (1) arise in connection with many boundary value and eigenvalue problems of mathematical physics. Three types of linear integralequations are distinguished: If 2 = 0, then (1) is called an equation of the first kind; if 2a(x) i= 0 for all x E X, then (1) is termed an equation of the second kind; and finally, if a vanishes on so
Pindex Book 1991
The information of publication is updating

書目名稱Analysis IV影響因子(影響力)




書目名稱Analysis IV影響因子(影響力)學(xué)科排名




書目名稱Analysis IV網(wǎng)絡(luò)公開度




書目名稱Analysis IV網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analysis IV被引頻次




書目名稱Analysis IV被引頻次學(xué)科排名




書目名稱Analysis IV年度引用




書目名稱Analysis IV年度引用學(xué)科排名




書目名稱Analysis IV讀者反饋




書目名稱Analysis IV讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:57 | 只看該作者
0938-0396 en (1) is called an equation of the first kind; if 2a(x) i= 0 for all x E X, then (1) is termed an equation of the second kind; and finally, if a vanishes on so978-3-642-63491-8978-3-642-58175-5Series ISSN 0938-0396
板凳
發(fā)表于 2025-3-22 03:47:15 | 只看該作者
Linear Integral Equations,ed) functions, which are referred to as the ., the ., and the . (or the .) of equation (1), respectively. The problem consists in determining the parameter . and the unknown function . such that equation (1) is satisfied for almost all . ∈ . (or even for all x ∈ . if, for instance, the integral is u
地板
發(fā)表于 2025-3-22 06:07:20 | 只看該作者
https://doi.org/10.1007/978-3-642-58175-5Integralgleichungen; Nichtstetige Randintegrale; Potential theory; Potentialtheorie; Randintegraltheorie
5#
發(fā)表于 2025-3-22 10:40:16 | 只看該作者
978-3-642-63491-8Springer-Verlag Berlin Heidelberg 1991
6#
發(fā)表于 2025-3-22 13:31:18 | 只看該作者
7#
發(fā)表于 2025-3-22 19:54:23 | 只看該作者
Encyclopaedia of Mathematical Scienceshttp://image.papertrans.cn/a/image/156140.jpg
8#
發(fā)表于 2025-3-23 01:08:03 | 只看該作者
9#
發(fā)表于 2025-3-23 02:16:10 | 只看該作者
10#
發(fā)表于 2025-3-23 09:13:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 22:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
那曲县| 灵宝市| 漳州市| 曲靖市| 临颍县| 仙游县| 莒南县| 尖扎县| 连州市| 乌苏市| 承德市| 民权县| 舞阳县| 延津县| 台北县| 民勤县| 柘荣县| 华池县| 徐水县| 武宁县| 永康市| 连州市| 衡水市| 大渡口区| 乐陵市| 江油市| 定日县| 塘沽区| 鄂尔多斯市| 阳西县| 苍梧县| 嘉定区| 鹤壁市| 朝阳县| 盐池县| 锡林郭勒盟| 仪征市| 平度市| 崇左市| 镇平县| 鹤岗市|