找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Modern Enumerative Geometry; Andrea T. Ricolfi Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: ergonomics
11#
發(fā)表于 2025-3-23 10:24:49 | 只看該作者
12#
發(fā)表于 2025-3-23 17:14:36 | 只看該作者
13#
發(fā)表于 2025-3-23 21:46:07 | 只看該作者
14#
發(fā)表于 2025-3-24 01:15:41 | 只看該作者
Equivariant Cohomology,n: Algebraic .-theory (Seattle, WA, 1997). Proc. Sympos. Pure Math., vol. 67, pp. 249–281. Amer. Math. Soc., Providence, 1999) and Edidin and Graham (Amer J Math 120(3), 619–636, 1998) for extensions from cohomology to Chow, and see also Ellingsrud and Str?mme (J Amer Math Soc 9(1):175–193, 1996) fo
15#
發(fā)表于 2025-3-24 03:00:56 | 只看該作者
Background Material,o sketch the algebraic definition of Chern classes, and conclude the chapter with a brief overview on representable functors, that will be needed to define fine moduli spaces and universal families. By . we will always mean an algebraically closed field. Most of the time in later chapters, we will set .
16#
發(fā)表于 2025-3-24 09:11:23 | 只看該作者
Applications of the Localisation Formula, Contemp 20:1–70, 2001) was of great inspiration for the first three sections in this chapter, and we take the opportunity to refer the reader to loc. cit. for more examples of application of the localisation formula (upgraded to equivariant Chow theory) in enumerative geometry.
17#
發(fā)表于 2025-3-24 12:08:52 | 只看該作者
18#
發(fā)表于 2025-3-24 16:45:26 | 只看該作者
19#
發(fā)表于 2025-3-24 22:07:44 | 只看該作者
20#
發(fā)表于 2025-3-25 01:37:25 | 只看該作者
Andrea T. RicolfiIllustrates a sophisticated theory starting from elementary examples.Useful guide towards research in several areas of math.Contains background results hard to find in specialised papers
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 04:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山阳县| 桂东县| 喜德县| 寻乌县| 同心县| 繁峙县| 石楼县| 隆昌县| 大兴区| 恩施市| 乡宁县| 革吉县| 密山市| 陆川县| 朝阳市| 东源县| 苏尼特右旗| 白河县| 军事| 上犹县| 凤冈县| 偃师市| 新竹市| 长汀县| 沅陵县| 香河县| 犍为县| 泸定县| 周至县| 阳朔县| 个旧市| 罗城| 克拉玛依市| 上思县| 汶川县| 永靖县| 嘉义县| 手游| 长子县| 建昌县| 河北区|