找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Algebraic Geometry; Karen E. Smith,Lauri Kahanp??,William Traves Textbook 2000 Springer Science+Business Media New York 2

[復制鏈接]
樓主: 管玄樂團
11#
發(fā)表于 2025-3-23 11:42:06 | 只看該作者
12#
發(fā)表于 2025-3-23 14:20:39 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:21 | 只看該作者
Otto K?rner Dr. med., Dr. phil. h. c.Much of the power and rigor of algebraic geometry comes from the fact that geometric questions can be translated into purely algebraic problems.
14#
發(fā)表于 2025-3-23 23:10:42 | 只看該作者
,Die Gruppe der Schlangen (??ιε?),Affine space A. has a natural compactification, the projective space ?., obtained by adding an infinitely distant point in every direction. The goal of this chapter is to introduce projective space and projective varieties and to interpret them as natural compactifications of affine varieties.
15#
發(fā)表于 2025-3-24 03:31:31 | 只看該作者
,St?rungen des visuellen Erkennens,Veronese maps provide an important example of morphisms of quasi-projective varieties. A Veronese map embeds a projective space ?. as a subvariety of some higher-dimensional projective space in a nontrivial way.
16#
發(fā)表于 2025-3-24 06:40:36 | 只看該作者
17#
發(fā)表于 2025-3-24 12:15:45 | 只看該作者
18#
發(fā)表于 2025-3-24 16:18:34 | 只看該作者
Projective Varieties,Affine space A. has a natural compactification, the projective space ?., obtained by adding an infinitely distant point in every direction. The goal of this chapter is to introduce projective space and projective varieties and to interpret them as natural compactifications of affine varieties.
19#
發(fā)表于 2025-3-24 19:39:35 | 只看該作者
Classical Constructions,Veronese maps provide an important example of morphisms of quasi-projective varieties. A Veronese map embeds a projective space ?. as a subvariety of some higher-dimensional projective space in a nontrivial way.
20#
發(fā)表于 2025-3-25 01:42:03 | 只看該作者
Birational Geometry,In 1964, Heisuke Hironaka proved a fundamental theorem: Every quasi-projective variety can be ., or equivalently, every variety is “birationally equivalent” to a smooth projective variety. Before we can state this theorem, we need to introduce some new ideas.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 01:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
米林县| 四子王旗| 广安市| 深圳市| 开远市| 惠来县| 千阳县| 封丘县| 西城区| 易门县| 东山县| 洪泽县| 峨边| 马关县| 新巴尔虎右旗| 晋中市| 邯郸市| 永年县| 远安县| 襄垣县| 习水县| 错那县| 宁国市| 德兴市| 白山市| 凤翔县| 新竹县| 临朐县| 延安市| 英超| 临颍县| 连平县| 皮山县| 南溪县| 镇安县| 临汾市| 阳新县| 惠水县| 广水市| 全州县| 增城市|