找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Theory of Multipliers; Ronald Larsen Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Koordinatentransformation.M

[復(fù)制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 04:16:24 | 只看該作者
https://doi.org/10.1007/978-3-642-92156-8 spaces. In this chapter we shall study a variety of topological linear spaces of functions and measures for which a characterization of the multipliers is relatively accessible. In addition to its intrinsic interest we hope that this material will illustrate some of the differences between the stud
22#
發(fā)表于 2025-3-25 08:52:55 | 只看該作者
https://doi.org/10.1007/978-3-642-91143-9vious chapters. In particular, we have already discussed to some extent the cases when .1 and . ∞. Consequently we shall now restrict our attention primarily to the values of . such that 1< . < ∞. We shall show in the following sections that the multipliers for .(.) can, in a certain sense, be repre
23#
發(fā)表于 2025-3-25 14:17:22 | 只看該作者
24#
發(fā)表于 2025-3-25 17:04:46 | 只看該作者
Fragestellungen und Untersuchungsmethoden, algebras. These algebras are similar to the group algebra ..(.) in a great many ways. In particular for noncompact groups we shall see that the algebras ..(.) and ..(.) have the same multipliers. However the algebras ..(.) are neither group nor . algebras. This leads to the observation that the nat
25#
發(fā)表于 2025-3-25 23:41:03 | 只看該作者
26#
發(fā)表于 2025-3-26 03:57:54 | 只看該作者
Prologue: The Multipliers for ,(,), describe those sequences {.} for which.is always the Fourier series of a periodic integrable function whenever.is such a Fourier series. Subsequently the notion has been employed in many other areas of harmonic analysis, such as the study of properties of the Fourier transformation and its extensio
27#
發(fā)表于 2025-3-26 07:35:55 | 只看該作者
The Multipliers for Commutative ,*-Algebras,s with the Banach algebra norm, b).c) .* . ≠ 0 if . ≠ 0 and d) <.,.> = <., .* .> for all ., ., .∈.. The standard example of an .*-algebra is the algebra .(.) for a compact group . with the usual convolution multiplication and scalar product. A general discussion of .*-algebras can be found in Loomis
28#
發(fā)表于 2025-3-26 11:10:49 | 只看該作者
29#
發(fā)表于 2025-3-26 14:13:39 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:11 | 只看該作者
,The Multipliers for the Pair (, (,), ,(,)), 1 ≦ ,, , ≦ ∞,re . ≠ .. The problem of describing the multipliers in this situation is equally if not more difficult than in the case . = .. In order to obtain a description of the multipliers as convolution operators we shall have to introduce a class of mathematical objects which properly contains the space of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌市| 霍城县| 宜兰县| 汾阳市| 霍林郭勒市| 温泉县| 楚雄市| 白银市| 宜宾县| 信阳市| 乌拉特中旗| 桐柏县| 兰坪| 邹城市| 宁远县| 鸡泽县| 竹溪县| 芒康县| 定襄县| 民权县| 历史| 虎林市| 旺苍县| 柏乡县| 邹平县| 申扎县| 双牌县| 峨眉山市| 吴堡县| 沙田区| 嘉鱼县| 金阳县| 竹溪县| 昌江| 绿春县| 行唐县| 治县。| 昂仁县| 丰台区| 新乡县| 忻州市|