找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Theory of Groups; Joseph J. Rotman Textbook 1995Latest edition Springer Science+Business Media New York 1995 Abelia

[復制鏈接]
樓主: Thoracic
11#
發(fā)表于 2025-3-23 10:12:48 | 只看該作者
https://doi.org/10.1007/978-3-531-91657-6The notion of generators and relations can be extended from abelian groups to arbitrary groups once we have a nonabelian analogue of free abelian groups. We use the property appearing in Theorem 10.11 as our starting point.
12#
發(fā)表于 2025-3-23 16:03:13 | 只看該作者
13#
發(fā)表于 2025-3-23 21:52:52 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:04 | 只看該作者
Symmetric Groups and ,-Sets,The definition of group arose from fundamental properties of the symmetric group S.. But there is another important feature of S.: its elements arc functions acting on some underlying set, and this aspect is not explicit in our presentation so far. The notion of . is the appropriate abstraction of this idea.
15#
發(fā)表于 2025-3-24 02:37:57 | 只看該作者
The Sylow Theorems,The order of a group . has consequences for its structure. A rough rule of thumb is that the more complicated the prime factorization of |.|, the more complicated the group. In particular, the fewer the number of distinct prime factors in |G|, the more tractible it is. We now study the “l(fā)ocal” case when only one prime divides |.|.
16#
發(fā)表于 2025-3-24 08:39:06 | 只看該作者
Normal Series,We begin this chapter with a brief history of the study of roots of polynomials. Mathematicians of the Middle Ages, and probably those in Babylonia, knew the . giving the roots of a quadratic polynomial .(.) = .. + . + .. Setting . transforms .(.) into a polynomial g(.) with no . term:
17#
發(fā)表于 2025-3-24 11:38:09 | 只看該作者
Extensions and Cohomology,A group . having a normal subgroup . can be “factored” into . and .. The study of extensions involves the inverse question: Given . ? . and ., to what extent can one recapture .?
18#
發(fā)表于 2025-3-24 15:01:36 | 只看該作者
Abelian Groups,Commutativity is a strong hypothesis, so strong that all finite abelian groups are completely classified. In this chapter, we focus on finitely generated and, more generally, countable abelian groups.
19#
發(fā)表于 2025-3-24 20:39:07 | 只看該作者
Free Groups and Free Products,The notion of generators and relations can be extended from abelian groups to arbitrary groups once we have a nonabelian analogue of free abelian groups. We use the property appearing in Theorem 10.11 as our starting point.
20#
發(fā)表于 2025-3-25 03:12:45 | 只看該作者
The Word Problem,Novikov, Boone, and Britton proved, independently, that there is a finitely presented group ? for which no computer can ever exist that can decide whether an arbitrary word on the generators of ? is 1. We shall prove this remarkable result in this chapter.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永宁县| 肃宁县| 正宁县| 方山县| 安阳市| 满城县| 涟源市| 抚顺市| 阜南县| 永安市| 张家界市| 古交市| 灵璧县| 满洲里市| 额济纳旗| 织金县| 崇阳县| 西安市| 萨迦县| 怀化市| 阳新县| 庆安县| 曲沃县| 黄陵县| 乐都县| 长宁区| 麦盖提县| 乐安县| 黄大仙区| 闵行区| 建始县| 突泉县| 五华县| 武川县| 桂东县| 无为县| 永德县| 呼伦贝尔市| 原阳县| 瑞安市| 衡山县|