找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the K?hler-Ricci Flow; Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue Book 2013 Springer International Publishing S

[復(fù)制鏈接]
查看: 15667|回復(fù): 37
樓主
發(fā)表于 2025-3-21 18:07:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱An Introduction to the K?hler-Ricci Flow
影響因子2023Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue
視頻videohttp://file.papertrans.cn/156/155558/155558.mp4
發(fā)行地址An educational and up-to-date reference work on non-linear parabolic partial differential equations.The only book currently available on the K?hler-Ricci flow.The first book to present a complete proo
學(xué)科分類Lecture Notes in Mathematics
圖書(shū)封面Titlebook: An Introduction to the K?hler-Ricci Flow;  Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue Book 2013 Springer International Publishing S
影響因子.This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the K?hler-Ricci flow and its current state-of-the-art. While several excellent books on K?hler-Einstein geometry are available, there have been no such works on the K?hler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research..?.The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for K?hler manifolds, it becomes the K?hler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation)..As a spin-off of his breakthrough, G. Perelman proved the convergence of the K?hler-Ricci flow on K?hler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the K?hler-Ricci flow is a metric embodiment of
Pindex Book 2013
The information of publication is updating

書(shū)目名稱An Introduction to the K?hler-Ricci Flow影響因子(影響力)




書(shū)目名稱An Introduction to the K?hler-Ricci Flow影響因子(影響力)學(xué)科排名




書(shū)目名稱An Introduction to the K?hler-Ricci Flow網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱An Introduction to the K?hler-Ricci Flow網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱An Introduction to the K?hler-Ricci Flow被引頻次




書(shū)目名稱An Introduction to the K?hler-Ricci Flow被引頻次學(xué)科排名




書(shū)目名稱An Introduction to the K?hler-Ricci Flow年度引用




書(shū)目名稱An Introduction to the K?hler-Ricci Flow年度引用學(xué)科排名




書(shū)目名稱An Introduction to the K?hler-Ricci Flow讀者反饋




書(shū)目名稱An Introduction to the K?hler-Ricci Flow讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:42:10 | 只看該作者
0075-8434 K?hler-Ricci flow.The first book to present a complete proo.This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the K?hler-Ricci flow and its current state-of-the-art. While several excel
板凳
發(fā)表于 2025-3-22 03:12:56 | 只看該作者
地板
發(fā)表于 2025-3-22 04:34:01 | 只看該作者
5#
發(fā)表于 2025-3-22 11:07:04 | 只看該作者
,Technologien für Digitalisierungsl?sungen,ference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal K?hler Metrics and K?hler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).
6#
發(fā)表于 2025-3-22 15:34:11 | 只看該作者
,The K?hler–Ricci Flow on Fano Manifolds,ference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal K?hler Metrics and K?hler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).
7#
發(fā)表于 2025-3-22 18:06:05 | 只看該作者
8#
發(fā)表于 2025-3-22 23:26:05 | 只看該作者
,An Introduction to the K?hler–Ricci Flow,or the flow, convergence on manifolds with negative and zero first Chern class, and behavior of the flow in the case when the canonical bundle is big and nef. We also discuss the collapsing of the K?hler–Ricci flow on the product of a torus and a Riemann surface of genus greater than one. Finally, w
9#
發(fā)表于 2025-3-23 01:59:43 | 只看該作者
,Regularizing Properties of the K?hler–Ricci Flow,zing the work of Song and Tian on this topic. This result is applied to construct a K?hler–Ricci flow on varieties with log terminal singularities, in connection with the Minimal Model Program. The same circle of ideas is also used to prove a regularity result for elliptic complex Monge–Ampère equat
10#
發(fā)表于 2025-3-23 08:10:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 14:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黎城县| 廊坊市| 噶尔县| 文化| 珲春市| 鞍山市| 枝江市| 辽宁省| 新民市| 全南县| 吴江市| 集安市| 静宁县| 宣汉县| 汨罗市| 通河县| 甘肃省| 江阴市| 宝山区| 宜兰市| 绥德县| 巧家县| 梅河口市| 克拉玛依市| 台南县| 茂名市| 禹州市| 广饶县| 确山县| 台南市| 阆中市| 老河口市| 巫山县| 永顺县| 西乌珠穆沁旗| 双城市| 寻乌县| 尼勒克县| 万州区| 叶城县| 鱼台县|