找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Geometry of Numbers; J. W. S. Cassels Book 1997 Springer-Verlag Berlin Heidelberg 1997 Diophantine approximation.Pr

[復制鏈接]
樓主: affected
11#
發(fā)表于 2025-3-23 11:43:39 | 只看該作者
https://doi.org/10.1007/978-3-476-04103-6 .-dimensional euclidean space is symmetric about the origin (i.e. contains — . when it contains .) and convex [i.e. contains the whole line-segment. + (1 – λ). (0 ≦ λ ≦ 1).when it contains . and.] and has volume .>2., then it contains an integral point . other than the origin. In this way we have a
12#
發(fā)表于 2025-3-23 17:40:15 | 只看該作者
Die Kurzgeschichte im Schulunterricht,hat is meant by two lattices Λ and . being near to each other; and this is done by means of homogeneous linear transformations. A homogeneous linear transformation .=. of .-dimensional euclidean space into itself is said to be near to identity transformation if the coefficients τ. in.are near those
13#
發(fā)表于 2025-3-23 19:28:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:45 | 只看該作者
15#
發(fā)表于 2025-3-24 04:05:46 | 只看該作者
16#
發(fā)表于 2025-3-24 09:00:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:17:16 | 只看該作者
978-3-540-61788-4Springer-Verlag Berlin Heidelberg 1997
18#
發(fā)表于 2025-3-24 18:19:20 | 只看該作者
,Gegner und Verbündete in der Kohlenkrise,In this chapter we introduce the most important concept in the geometry of numbers, that of a lattice, and develop some of its basic properties. The contents of this chapter, except § 2.4 and § 5, are fundamental for almost everything that follows.
19#
發(fā)表于 2025-3-24 20:53:12 | 只看該作者
https://doi.org/10.1007/978-3-476-04103-6In this chapter we introduce a number of concepts which are useful tools in all that follows.
20#
發(fā)表于 2025-3-25 00:07:21 | 只看該作者
Grundfragen des RundfunkmarktesFor some purposes one requires to know not merely that a lattice Λ has a point in a set ., but that it has a number of linearly independent points in ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 12:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
神木县| 呼玛县| 深水埗区| 滦南县| 东至县| 贵德县| 南澳县| 滨海县| 淮阳县| 浦东新区| 淮南市| 碌曲县| 延庆县| 沂南县| 浦东新区| 宁国市| 青铜峡市| 铁岭县| 山东省| 翼城县| 信丰县| 黔东| 彭山县| 云阳县| 芜湖县| 宿松县| 靖西县| 沾益县| 绥芬河市| 宽城| 临武县| 大同县| 赤峰市| 沈阳市| 日照市| 涞水县| 蓬莱市| 乌拉特后旗| 枞阳县| 城步| 调兵山市|