找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Riemann Surfaces; Terrence Napier,Mohan Ramachandran Textbook 2012 Springer Science+Business Media, LCC 2012 DeRham-Hod

[復(fù)制鏈接]
樓主: Extraneous
31#
發(fā)表于 2025-3-27 00:01:06 | 只看該作者
Background Material on Linear Algebrain Sect.?.) and tensor products (which are essential in the discussion of holomorphic line bundles in Chap.?.). In this book, we mostly consider exterior and tensor products in vector spaces of dimension?1?or?2.
32#
發(fā)表于 2025-3-27 02:44:12 | 只看該作者
https://doi.org/10.1007/978-0-8176-4693-6DeRham-Hodge decomposition; Morse theory; complex manifolds
33#
發(fā)表于 2025-3-27 08:12:15 | 只看該作者
34#
發(fā)表于 2025-3-27 10:00:03 | 只看該作者
Heinz Maier-Leibnitz,Reimar LüstIn this chapter, we recall some basic definitions and facts concerning integration and Hilbert spaces.
35#
發(fā)表于 2025-3-27 15:57:52 | 只看該作者
https://doi.org/10.1007/978-3-663-05099-5In this chapter, we recall some basic definitions and facts concerning analysis on manifolds (mainly of dimension?1 or?2).
36#
發(fā)表于 2025-3-27 18:05:02 | 只看該作者
Entwicklung des Untersuchungsmodells,This chapter is required for the proof of integrability of almost complex structures in Chap.?.. The main goal is a regularity theorem for first order differential operators satisfying a certain estimate.
37#
發(fā)表于 2025-3-28 01:06:58 | 只看該作者
38#
發(fā)表于 2025-3-28 04:27:48 | 只看該作者
39#
發(fā)表于 2025-3-28 08:15:04 | 只看該作者
Background Material on Sobolev Spaces and RegularityThis chapter is required for the proof of integrability of almost complex structures in Chap.?.. The main goal is a regularity theorem for first order differential operators satisfying a certain estimate.
40#
發(fā)表于 2025-3-28 11:09:16 | 只看該作者
Complex Analysis in ?and facts concerning complex analysis in ? from the point of view of local solutions of the inhomogeneous Cauchy–Riemann equation .. The . solution of the analogous inhomogeneous Cauchy–Riemann equation on a Riemann surface (see Chaps.?.?and?.) will allow us to obtain analogues of some of the centra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀来县| 邵武市| 龙游县| 曲麻莱县| 如皋市| 榆社县| 临江市| 丹东市| 鲜城| 波密县| 沈阳市| 昂仁县| 漳州市| 基隆市| 莒南县| 青州市| 廊坊市| 湖南省| 安康市| 浮梁县| 徐闻县| 临武县| 维西| 镶黄旗| 梅河口市| 广丰县| 湖口县| 松溪县| 磐安县| 化州市| 吴江市| 班玛县| 海城市| 钟祥市| 乐亭县| 济宁市| 张家界市| 海盐县| 英山县| 昌江| 怀安县|