找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Proofs with Set Theory; Daniel Ashlock,Colin Lee Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
查看: 10390|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:27:03 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to Proofs with Set Theory
影響因子2023Daniel Ashlock,Colin Lee
視頻videohttp://file.papertrans.cn/156/155439/155439.mp4
學(xué)科分類Synthesis Lectures on Mathematics & Statistics
圖書封面Titlebook: An Introduction to Proofs with Set Theory;  Daniel Ashlock,Colin Lee Book 2020 Springer Nature Switzerland AG 2020
影響因子.This text is intended as an introduction to mathematical proofs for students.. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid‘s algorithm. Chapter 9 is an introduction to combinat
Pindex Book 2020
The information of publication is updating

書目名稱An Introduction to Proofs with Set Theory影響因子(影響力)




書目名稱An Introduction to Proofs with Set Theory影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Proofs with Set Theory網(wǎng)絡(luò)公開度




書目名稱An Introduction to Proofs with Set Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to Proofs with Set Theory被引頻次




書目名稱An Introduction to Proofs with Set Theory被引頻次學(xué)科排名




書目名稱An Introduction to Proofs with Set Theory年度引用




書目名稱An Introduction to Proofs with Set Theory年度引用學(xué)科排名




書目名稱An Introduction to Proofs with Set Theory讀者反饋




書目名稱An Introduction to Proofs with Set Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:13:37 | 只看該作者
https://doi.org/10.1007/978-3-0348-6225-7ue in one case and then also prove that if it is true in a given case it is true in the next case. This then permits the cases for which the statement is true to cascade from the initial true case, like knocking down a row of dominos.
板凳
發(fā)表于 2025-3-22 00:49:01 | 只看該作者
Die Option für den Totalen Führerstaatpter seeks to provide a solid introduction to the subject matter for students first encountering axiomatic set theory it is by no means the most exhaustive or authoritative text. Students interested in a more comprehensive discussion of axiomatic set theory will find . by Robert R. Stoll an excellent resource.
地板
發(fā)表于 2025-3-22 05:17:26 | 只看該作者
Die Weltstadte als Konsumzentren,e, or size, of different sorts of infinite sets of numbers. His line of research led to the conclusion that there are all sorts of different types of infinities. Ultimately, thanks to the contributions of a variety of other mathematicians, set theory led to a solid logical foundation for mathematics
5#
發(fā)表于 2025-3-22 11:06:58 | 只看該作者
https://doi.org/10.1007/978-3-322-83840-7gic, which studies the principles of valid reasoning, has been around since at the very least ancient Babylon. However, some of the logic which is commonly encountered in modern society has only been around for a surprisingly short period of time. Boolean logic, invented by George Boole (1815-1864),
6#
發(fā)表于 2025-3-22 16:40:04 | 只看該作者
7#
發(fā)表于 2025-3-22 19:42:21 | 只看該作者
https://doi.org/10.1007/978-3-0348-6225-7ue in one case and then also prove that if it is true in a given case it is true in the next case. This then permits the cases for which the statement is true to cascade from the initial true case, like knocking down a row of dominos.
8#
發(fā)表于 2025-3-22 22:35:28 | 只看該作者
9#
發(fā)表于 2025-3-23 03:41:11 | 只看該作者
10#
發(fā)表于 2025-3-23 09:32:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德州市| 峡江县| 胶州市| 辽源市| 揭阳市| 启东市| 昌图县| 酒泉市| 民县| 彰化县| 宜阳县| 张北县| 革吉县| 朝阳区| 和硕县| 新昌县| 亚东县| 阜新市| 洛隆县| 闻喜县| 南靖县| 缙云县| 岗巴县| 富川| 长春市| 亚东县| 巍山| 海城市| 资兴市| 托里县| 新龙县| 通城县| 邵阳县| 光山县| 进贤县| 台山市| 陇南市| 安国市| 汪清县| 乐陵市| 青岛市|