找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Optimal Control of FBSDE with Incomplete Information; Guangchen Wang,Zhen Wu,Jie Xiong Book 2018 The Author(s), under e

[復(fù)制鏈接]
樓主: 變成小松鼠
21#
發(fā)表于 2025-3-25 06:57:01 | 只看該作者
22#
發(fā)表于 2025-3-25 07:42:22 | 只看該作者
978-3-319-79038-1The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nat
23#
發(fā)表于 2025-3-25 14:06:04 | 只看該作者
Filtering of BSDE and FBSDE, with incomplete information. We first state a theorem on the stochastic filtering of a general stochastic process. The proof of that result can be found in Liptser and Shiyayev [49], so we omit it here. Then, we apply this result to the stochastic filtering for the solutions to BSDEs in Section?. and to those for FBSDEs in Section?..
24#
發(fā)表于 2025-3-25 17:50:24 | 只看該作者
Optimal Control of Fully Coupled FBSDE with Partial Information,e convex variation and the duality technique, we derive a stochastic maximum principle and two verification theorems for optimality of Problem A. As an application of the optimality conditions, we solve explicitly an LQ optimal control problem and a cash management problem.
25#
發(fā)表于 2025-3-25 23:48:56 | 只看該作者
26#
發(fā)表于 2025-3-26 03:11:49 | 只看該作者
27#
發(fā)表于 2025-3-26 04:35:04 | 只看該作者
Book 2018rmation is not complete.?The aim of this book is to fill this gap...This book is written in a style suitable for graduate students and researchers in mathematics and engineering with basic knowledge of stochastic process, optimal control and mathematical finance..
28#
發(fā)表于 2025-3-26 08:30:14 | 只看該作者
29#
發(fā)表于 2025-3-26 13:59:08 | 只看該作者
Die vorsokratischen Philosopheno versions of the stochastic maximum principle for the characterization of the optimal control. To demonstrate the applicability, we work out an illustrative example within the framework of recursive utility and then solve it via the stochastic maximum principle and the stochastic filtering.
30#
發(fā)表于 2025-3-26 16:53:47 | 只看該作者
Optimal Control of FBSDE with Partially Observable Information,o versions of the stochastic maximum principle for the characterization of the optimal control. To demonstrate the applicability, we work out an illustrative example within the framework of recursive utility and then solve it via the stochastic maximum principle and the stochastic filtering.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
齐河县| 宁晋县| 郓城县| 定南县| 平凉市| 平利县| 图木舒克市| 清流县| 华亭县| 托克托县| 阿瓦提县| 琼海市| 新宾| 广德县| 横山县| 元阳县| 湘潭市| 长阳| 颍上县| 嵩明县| 外汇| 奉节县| 益阳市| 栾城县| 泊头市| 闽清县| 余江县| 河南省| 镇江市| 沭阳县| 枣庄市| 津市市| 南投市| 锡林郭勒盟| 京山县| 江津市| 万安县| 婺源县| 金溪县| 获嘉县| 莱芜市|