找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Nonlinear Functional Analysis and Elliptic Problems; Antonio Ambrosetti,David Arcoya Textbook 2011 Springer Science+Bus

[復(fù)制鏈接]
樓主: GLAZE
31#
發(fā)表于 2025-3-26 21:58:22 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:45 | 只看該作者
33#
發(fā)表于 2025-3-27 09:00:44 | 只看該作者
34#
發(fā)表于 2025-3-27 13:11:34 | 只看該作者
Das Problem und seine Untersuchung,s case an appropriate approach seems to be critical point theory. Actually, the mountain pass theorem or the linking theorem can be used to find solutions. We also show how to study superlinear problems by using the topological degree.
35#
發(fā)表于 2025-3-27 16:22:51 | 只看該作者
36#
發(fā)表于 2025-3-27 20:29:51 | 只看該作者
37#
發(fā)表于 2025-3-28 01:52:21 | 只看該作者
38#
發(fā)表于 2025-3-28 06:06:31 | 只看該作者
Das Problem und seine Untersuchung,at infinity. It will be shown that, according to the properties of the nonlinearity, we can use the global inversion theorem (to get existence and uniqueness) or topological degree or else critical point theory.
39#
發(fā)表于 2025-3-28 09:29:57 | 只看該作者
https://doi.org/10.1007/978-3-663-14805-0ar problems. For this class of equations it is quite natural to use the bifurcation from infinity. The classical Landesman—Lazer existence result is found by this method as well as by using a variational approach. The bifurcation from infinity also leads to proving the anti-maximum principle.
40#
發(fā)表于 2025-3-28 14:21:40 | 只看該作者
Das Problem und seine Untersuchung,s case an appropriate approach seems to be critical point theory. Actually, the mountain pass theorem or the linking theorem can be used to find solutions. We also show how to study superlinear problems by using the topological degree.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 00:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会宁县| 苗栗县| 武功县| 张家港市| 东方市| 巨鹿县| 广元市| 渝中区| 德格县| 大庆市| 达孜县| 晋江市| 贞丰县| 鞍山市| 新竹县| 泸溪县| 大理市| 涿州市| 烟台市| 攀枝花市| 长丰县| 赫章县| 长春市| 安福县| 萨迦县| 根河市| 沛县| 章丘市| 灌南县| 深州市| 博罗县| 榆中县| 交城县| 长乐市| 台山市| 江安县| 阿图什市| 南平市| 乌兰察布市| 蒙山县| 贵州省|