找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Nonlinear Functional Analysis and Elliptic Problems; Antonio Ambrosetti,David Arcoya Textbook 2011 Springer Science+Bus

[復制鏈接]
樓主: GLAZE
31#
發(fā)表于 2025-3-26 21:58:22 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:45 | 只看該作者
33#
發(fā)表于 2025-3-27 09:00:44 | 只看該作者
34#
發(fā)表于 2025-3-27 13:11:34 | 只看該作者
Das Problem und seine Untersuchung,s case an appropriate approach seems to be critical point theory. Actually, the mountain pass theorem or the linking theorem can be used to find solutions. We also show how to study superlinear problems by using the topological degree.
35#
發(fā)表于 2025-3-27 16:22:51 | 只看該作者
36#
發(fā)表于 2025-3-27 20:29:51 | 只看該作者
37#
發(fā)表于 2025-3-28 01:52:21 | 只看該作者
38#
發(fā)表于 2025-3-28 06:06:31 | 只看該作者
Das Problem und seine Untersuchung,at infinity. It will be shown that, according to the properties of the nonlinearity, we can use the global inversion theorem (to get existence and uniqueness) or topological degree or else critical point theory.
39#
發(fā)表于 2025-3-28 09:29:57 | 只看該作者
https://doi.org/10.1007/978-3-663-14805-0ar problems. For this class of equations it is quite natural to use the bifurcation from infinity. The classical Landesman—Lazer existence result is found by this method as well as by using a variational approach. The bifurcation from infinity also leads to proving the anti-maximum principle.
40#
發(fā)表于 2025-3-28 14:21:40 | 只看該作者
Das Problem und seine Untersuchung,s case an appropriate approach seems to be critical point theory. Actually, the mountain pass theorem or the linking theorem can be used to find solutions. We also show how to study superlinear problems by using the topological degree.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 12:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沈阳市| 洪湖市| 龙泉市| 白河县| 泌阳县| 柳州市| 黄石市| 雷州市| 灵寿县| 六枝特区| 江西省| 阳朔县| 云林县| 大足县| 天镇县| 铁岭市| 佛教| 浦北县| 中江县| 冕宁县| 霍城县| 紫云| 长阳| 秦皇岛市| 无锡市| 镶黄旗| 平乐县| 嵊州市| 徐汇区| 遂昌县| 琼海市| 如皋市| 达日县| 宜兰市| 温州市| 进贤县| 余姚市| 中西区| 渑池县| 大田县| 太仓市|