找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Multivariable Analysis from Vector to Manifold; Piotr Mikusiński,Michael D. Taylor Textbook 2002 Springer Science+Busin

[復制鏈接]
查看: 8261|回復: 42
樓主
發(fā)表于 2025-3-21 18:06:17 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to Multivariable Analysis from Vector to Manifold
影響因子2023Piotr Mikusiński,Michael D. Taylor
視頻videohttp://file.papertrans.cn/156/155381/155381.mp4
圖書封面Titlebook: An Introduction to Multivariable Analysis from Vector to Manifold;  Piotr Mikusiński,Michael D. Taylor Textbook 2002 Springer Science+Busin
影響因子Multivariable analysis is an important subject for mathematicians, both pure and applied. Apart from mathematicians, we expect that physicists, mechanical engi- neers, electrical engineers, systems engineers, mathematical biologists, mathemati- cal economists, and statisticians engaged in multivariate analysis will find this book extremely useful. The material presented in this work is fundamental for studies in differential geometry and for analysis in N dimensions and on manifolds. It is also of interest to anyone working in the areas of general relativity, dynamical systems, fluid mechanics, electromagnetic phenomena, plasma dynamics, control theory, and optimization, to name only several. An earlier work entitled An Introduction to Analysis: from Number to Integral by Jan and Piotr Mikusinski was devoted to analyzing functions of a single variable. As indicated by the title, this present book concentrates on multivariable analysis and is completely self-contained. Our motivation and approach to this useful subject are discussed below. A careful study of analysis is difficult enough for the average student; that of multi variable analysis is an even greater challenge. Somehow th
Pindex Textbook 2002
The information of publication is updating

書目名稱An Introduction to Multivariable Analysis from Vector to Manifold影響因子(影響力)




書目名稱An Introduction to Multivariable Analysis from Vector to Manifold影響因子(影響力)學科排名




書目名稱An Introduction to Multivariable Analysis from Vector to Manifold網(wǎng)絡公開度




書目名稱An Introduction to Multivariable Analysis from Vector to Manifold網(wǎng)絡公開度學科排名




書目名稱An Introduction to Multivariable Analysis from Vector to Manifold被引頻次




書目名稱An Introduction to Multivariable Analysis from Vector to Manifold被引頻次學科排名




書目名稱An Introduction to Multivariable Analysis from Vector to Manifold年度引用




書目名稱An Introduction to Multivariable Analysis from Vector to Manifold年度引用學科排名




書目名稱An Introduction to Multivariable Analysis from Vector to Manifold讀者反饋




書目名稱An Introduction to Multivariable Analysis from Vector to Manifold讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:27:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:02:56 | 只看該作者
Vector Analysis on Manifolds,amili?r with the classical theorems of vector analysis, Green’s theorem, Gauss’ divergence theorem, and Stokes’ theorem. He or she perhaps knows something of their importance in such fields as fluid mechanics and electromagnetism.
地板
發(fā)表于 2025-3-22 05:39:38 | 只看該作者
5#
發(fā)表于 2025-3-22 11:10:20 | 只看該作者
Zusammenfassung der Untersuchungsergebnisseamili?r with the classical theorems of vector analysis, Green’s theorem, Gauss’ divergence theorem, and Stokes’ theorem. He or she perhaps knows something of their importance in such fields as fluid mechanics and electromagnetism.
6#
發(fā)表于 2025-3-22 14:44:24 | 只看該作者
7#
發(fā)表于 2025-3-22 20:46:20 | 只看該作者
8#
發(fā)表于 2025-3-22 21:15:43 | 只看該作者
9#
發(fā)表于 2025-3-23 02:12:12 | 只看該作者
10#
發(fā)表于 2025-3-23 07:01:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
莎车县| 余干县| 玉溪市| 柯坪县| 体育| 布拖县| 疏附县| 武邑县| 屏东县| 浙江省| 图木舒克市| 灵武市| 布拖县| 象山县| 资溪县| 饶平县| 岐山县| 崇仁县| 彝良县| 洛川县| 江油市| 西昌市| 勐海县| 游戏| 水富县| 昆山市| 广水市| 云梦县| 阿拉善盟| 长丰县| 通道| 罗田县| 花莲县| 芮城县| 河北省| 阿拉善盟| 怀来县| 宁夏| 保康县| 呈贡县| 水富县|