找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Machine Learning; Miroslav Kubat Textbook 20151st edition Springer International Publishing Switzerland 2015 Applicatio

[復(fù)制鏈接]
樓主: Awkward
41#
發(fā)表于 2025-3-28 17:23:04 | 只看該作者
The Genetic Algorithm, the training examples, but also future examples. Chapter?1 explained the principle of one of the most popular AI-based search techniques, the so-called ., and showed how it can be used in classifier induction.
42#
發(fā)表于 2025-3-28 20:54:19 | 只看該作者
Reinforcement Learning,echniques that have been developed with this in mind. In ., though, the task is different. Instead of induction from a set of pre-classified examples, the agent “experiments” with a system, and the system responds to this experimentation with rewards or punishments. The agent then optimizes its beha
43#
發(fā)表于 2025-3-29 00:13:52 | 只看該作者
Textbook 20151st editionnear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms..
44#
發(fā)表于 2025-3-29 06:04:16 | 只看該作者
45#
發(fā)表于 2025-3-29 09:56:48 | 只看該作者
46#
發(fā)表于 2025-3-29 15:23:45 | 只看該作者
https://doi.org/10.1007/978-3-662-26042-5ities and similarities employed by the earlier paradigms, we can try to identify the . that separates the two classes. A very simple possibility is to use to this end a linear function. More flexible are high-order polynomials which are capable of defining very complicated inter-class boundaries. These, however, have to be handled with care.
47#
發(fā)表于 2025-3-29 17:50:26 | 只看該作者
48#
發(fā)表于 2025-3-29 23:45:39 | 只看該作者
https://doi.org/10.1007/978-3-662-26042-5 simple. Error rate rarely paints the whole picture, and there are situations in which it can even be misleading. This is why the conscientious engineer wants to be acquainted with other criteria to assess the classifiers’ performance. This knowledge will enable her to choose the one that is best in capturing the behavioral aspects of interest.
49#
發(fā)表于 2025-3-30 02:31:39 | 只看該作者
50#
發(fā)表于 2025-3-30 07:19:51 | 只看該作者
Die Umweltvertr?glichkeitsprüfung the agent “experiments” with a system, and the system responds to this experimentation with rewards or punishments. The agent then optimizes its behavior, its goal being to maximize the rewards and to minimize the punishments.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 04:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
胶南市| 射阳县| 通州市| 福建省| 将乐县| 民县| 锡林浩特市| 上林县| 古蔺县| 神木县| 蒲江县| 玉环县| 新宾| 旬阳县| 射洪县| 于都县| 景东| 靖西县| 乌拉特前旗| 元江| 沂水县| 两当县| 余江县| 伊宁县| 孙吴县| 长宁县| 抚顺县| 祁东县| 沧州市| 赣州市| 新乡县| 蒙自县| 沙雅县| 娄烦县| 龙泉市| 望江县| 双流县| 枣庄市| 五莲县| 常德市| 洛南县|