找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Laplacian Spectral Distances and Kernels; Theory, Computation, Giuseppe Patanè Book 2017 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: 契約
11#
發(fā)表于 2025-3-23 10:44:57 | 只看該作者
https://doi.org/10.1007/978-3-642-91707-3 and shape analysis, as a generalization of the well-known biharmonic, diffusion, and wave distances. To support the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application, all the reviewed numerical schemes have been dis
12#
發(fā)表于 2025-3-23 17:38:36 | 只看該作者
13#
發(fā)表于 2025-3-23 20:06:56 | 只看該作者
Durchführung des TrockenvorgangesWe review the isotropic and anisotropic Laplace-Beltrami operator and introduce a unified representation of the corresponding Laplacian matrix for surfaces and volumes. Additional results have been presented in [Sor06, Tau99, KG00, ZvKD07].
14#
發(fā)表于 2025-3-23 23:16:00 | 只看該作者
15#
發(fā)表于 2025-3-24 04:43:55 | 只看該作者
Betriebsregelung bei TrockenanlagenIn geometry processing and shape analysis, several applications (e.g., surface remeshing, skeletonization, segmentation, comparison) have been addressed through the definition of shape descriptors and distances. Shape kernels, distances, and descriptors can be defined on 3D shapes by applying:
16#
發(fā)表于 2025-3-24 09:19:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:27:32 | 只看該作者
18#
發(fā)表于 2025-3-24 18:45:58 | 只看該作者
Heat and Wave Equations,We introduce the heat (Sec. 2.1) and wave (Sec. 2.2) equations; then, we discuss their discretization (Sec. 2.3), the selection of the time scale, and the computation of their solution (Sec. 2.4). Finally (Sec. 2.5), we compare different methods for the computation of the solution to the heat equation.
19#
發(fā)表于 2025-3-24 19:54:14 | 只看該作者
Laplacian Spectral Distances,In geometry processing and shape analysis, several applications (e.g., surface remeshing, skeletonization, segmentation, comparison) have been addressed through the definition of shape descriptors and distances. Shape kernels, distances, and descriptors can be defined on 3D shapes by applying:
20#
發(fā)表于 2025-3-25 00:58:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 07:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿阳县| 宝清县| 宁乡县| 道孚县| 神木县| 从江县| 格尔木市| 白城市| 冀州市| 景洪市| 渝中区| 台前县| 普兰店市| 甘孜| 景德镇市| 依安县| 马边| 上饶市| 固原市| 金门县| 宜良县| 永清县| 汝州市| 永昌县| 封丘县| 永兴县| 东海县| 丹棱县| 正蓝旗| 胶南市| 开远市| 湾仔区| 富裕县| 辉县市| 郸城县| 湘潭市| 乐昌市| 临澧县| 北碚区| 宁远县| 孝感市|