找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Infinite-Dimensional Linear Systems Theory; Ruth F. Curtain,Hans Zwart Textbook 1995 Springer Science+Business Media Ne

[復制鏈接]
查看: 45590|回復: 38
樓主
發(fā)表于 2025-3-21 18:31:12 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to Infinite-Dimensional Linear Systems Theory
影響因子2023Ruth F. Curtain,Hans Zwart
視頻videohttp://file.papertrans.cn/156/155293/155293.mp4
學科分類Texts in Applied Mathematics
圖書封面Titlebook: An Introduction to Infinite-Dimensional Linear Systems Theory;  Ruth F. Curtain,Hans Zwart Textbook 1995 Springer Science+Business Media Ne
影響因子Infinite dimensional systems is now an established area of research. Given the recent trend in systems theory and in applications towards a synthesis of time- and frequency-domain methods, there is a need for an introductory text which treats both state-space and frequency-domain aspects in an integrated fashion. The authors‘ primary aim is to write an introductory textbook for a course on infinite dimensional linear systems. An important consideration by the authors is that their book should be accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Consequently, all the mathematical background is summarized in an extensive appendix. For the majority of students, this would be their only acquaintance with infinite dimensional systems.
Pindex Textbook 1995
The information of publication is updating

書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory影響因子(影響力)




書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory影響因子(影響力)學科排名




書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory網(wǎng)絡公開度




書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory網(wǎng)絡公開度學科排名




書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory被引頻次




書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory被引頻次學科排名




書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory年度引用




書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory年度引用學科排名




書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory讀者反饋




書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:03:20 | 只看該作者
978-1-4612-8702-5Springer Science+Business Media New York 1995
板凳
發(fā)表于 2025-3-22 00:55:42 | 只看該作者
地板
發(fā)表于 2025-3-22 08:03:19 | 只看該作者
Die Tonleiter und ihre Mathematiks that arise for delay and distributed parameter (those described by partial differential equations) systems. These two special classes of infinite-dimensional systems occur most frequently in the applications.
5#
發(fā)表于 2025-3-22 11:48:47 | 只看該作者
6#
發(fā)表于 2025-3-22 14:01:46 | 只看該作者
7#
發(fā)表于 2025-3-22 20:33:13 | 只看該作者
Semigroup Theory, to describe them through an abstract formulation of the type. on a separable complex Hilbert space Z to enable us to present a unified treatment of these and finite-dimensional systems. Let us first consider a simple example.
8#
發(fā)表于 2025-3-22 23:42:17 | 只看該作者
9#
發(fā)表于 2025-3-23 03:32:21 | 只看該作者
Zusammenfassende Schlu?bemerkungenIn this chapter, we shall consider the following class of infinite-dimensional systems with input . and output .:
10#
發(fā)表于 2025-3-23 07:46:19 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 21:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
梧州市| 丹江口市| 和平区| 邵武市| 镇坪县| 河池市| 鲁山县| 马山县| 景东| 潮安县| 龙门县| 江口县| 施甸县| 丰都县| 双鸭山市| 读书| 富源县| 濉溪县| 江达县| 福建省| 盐池县| 靖安县| 安宁市| 樟树市| 巩义市| 普兰县| 湾仔区| 凌云县| 九寨沟县| 绥化市| 天等县| 贵阳市| 额敏县| 无为县| 胶南市| 横峰县| 当阳市| 甘孜县| 两当县| 连云港市| 中西区|