找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Incidence Geometry; Bart De Bruyn Book 2016 Springer International Publishing Switzerland 2016 projective spaces.incide

[復(fù)制鏈接]
樓主: 口語
11#
發(fā)表于 2025-3-23 10:44:13 | 只看該作者
12#
發(fā)表于 2025-3-23 17:04:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:51 | 只看該作者
14#
發(fā)表于 2025-3-23 22:41:58 | 只看該作者
Die Thermodynamik der Dampfmaschinenties of these geometries and describe several families. Dual polar spaces are examples of near polygons. In this chapter we also prove a result, essentially due to Peter Cameron, which characterizes dual polar spaces as those near polygons that satisfy certain specific properties.
15#
發(fā)表于 2025-3-24 05:04:48 | 只看該作者
16#
發(fā)表于 2025-3-24 09:20:13 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:08 | 只看該作者
Near polygons,ch of the structure theory of near polygons that we discuss here was developed in Brouwer and Wilbrink [26]. A lot of additional information about near polygons can be found in the reference book [51].
18#
發(fā)表于 2025-3-24 16:18:34 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:42 | 只看該作者
Designs,f Steiner triple systems. Design theory is however much broader than this. The reader who also wants to learn about other topics might consult other handbooks on design theory like [2, 87, 97, 135]. An extensive treatment of design theory can be found in the books [11, 12, 44].
20#
發(fā)表于 2025-3-24 23:34:35 | 只看該作者
https://doi.org/10.1007/978-3-663-14637-7eral of their basic properties. Several classes of these geometries will be further investigated in subsequent chapters. Proofs of most of these properties will be given as exercises in Appendix?A or will occur in later chapters. For the remaining (most difficult) properties however, an explicit ref
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广东省| 景泰县| 青阳县| 贡觉县| 惠来县| 秭归县| 双辽市| 营口市| 威远县| 陵水| 舞钢市| 湘西| 长岛县| 金山区| 揭阳市| 鄱阳县| 吉隆县| 南平市| 兰西县| 荔浦县| 大厂| 洪泽县| 都江堰市| 竹溪县| 兴化市| 苍南县| 泰兴市| 闽侯县| 自治县| 洛隆县| 汝城县| 龙州县| 柞水县| 江孜县| 达孜县| 容城县| 铅山县| 凉城县| 合肥市| 奉化市| 乌审旗|