找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Incidence Geometry; Bart De Bruyn Book 2016 Springer International Publishing Switzerland 2016 projective spaces.incide

[復制鏈接]
樓主: 口語
11#
發(fā)表于 2025-3-23 10:44:13 | 只看該作者
12#
發(fā)表于 2025-3-23 17:04:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:51 | 只看該作者
14#
發(fā)表于 2025-3-23 22:41:58 | 只看該作者
Die Thermodynamik der Dampfmaschinenties of these geometries and describe several families. Dual polar spaces are examples of near polygons. In this chapter we also prove a result, essentially due to Peter Cameron, which characterizes dual polar spaces as those near polygons that satisfy certain specific properties.
15#
發(fā)表于 2025-3-24 05:04:48 | 只看該作者
16#
發(fā)表于 2025-3-24 09:20:13 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:08 | 只看該作者
Near polygons,ch of the structure theory of near polygons that we discuss here was developed in Brouwer and Wilbrink [26]. A lot of additional information about near polygons can be found in the reference book [51].
18#
發(fā)表于 2025-3-24 16:18:34 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:42 | 只看該作者
Designs,f Steiner triple systems. Design theory is however much broader than this. The reader who also wants to learn about other topics might consult other handbooks on design theory like [2, 87, 97, 135]. An extensive treatment of design theory can be found in the books [11, 12, 44].
20#
發(fā)表于 2025-3-24 23:34:35 | 只看該作者
https://doi.org/10.1007/978-3-663-14637-7eral of their basic properties. Several classes of these geometries will be further investigated in subsequent chapters. Proofs of most of these properties will be given as exercises in Appendix?A or will occur in later chapters. For the remaining (most difficult) properties however, an explicit ref
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
泸水县| 江口县| 华宁县| 巧家县| 宿州市| 景泰县| 达孜县| 黑河市| 大埔区| 右玉县| 英吉沙县| 定日县| 宁德市| 曲麻莱县| 中方县| 凤城市| 太白县| 汾阳市| 岑溪市| 青河县| 汪清县| 缙云县| 剑阁县| 西吉县| 潞城市| 平潭县| 营山县| 天等县| 牟定县| 泾川县| 西和县| 屯昌县| 荔浦县| 金沙县| 玛多县| 资源县| 宜春市| 肇源县| 湾仔区| 晴隆县| 定陶县|