找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Compressible Flows with Applications; Quasi-One-Dimensiona José Pontes,Norberto Mangiavacchi,Gustavo R. Anjos Book 2019

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:28:54 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:56 | 只看該作者
Soziale Kontrolle der Gegenwart,ns for the existence of Detached shocks are discussed. As an alternative approach, oblique shocks are discussed in terms of the upstream Mach number and of the downstream velocity components in the directions parallel and perpendicular to the incoming flow. The chapter ends with a discussion of Riemann problems.
23#
發(fā)表于 2025-3-25 15:40:12 | 只看該作者
24#
發(fā)表于 2025-3-25 16:21:39 | 只看該作者
Compressible Potential Flows, Differential Equations. In sequence, the chapter addresses sound propagation questions, including the numerical solution of the wave equation in one and two dimensions, in the frequency domains, using Finite Differences and Finite Elements methods.
25#
發(fā)表于 2025-3-25 23:56:43 | 只看該作者
One-Dimensional Compressible Flows,heat transfer in variable transversal section ducts, where the critical Mach number .?=?1 is not attained at ducts throat. In sequence, the chapter discusses the flow of gases in isothermal ducts, followed by pointing the analogy with open channel hydraulics.
26#
發(fā)表于 2025-3-26 01:06:48 | 只看該作者
Oblique Shocks,ns for the existence of Detached shocks are discussed. As an alternative approach, oblique shocks are discussed in terms of the upstream Mach number and of the downstream velocity components in the directions parallel and perpendicular to the incoming flow. The chapter ends with a discussion of Riemann problems.
27#
發(fā)表于 2025-3-26 06:32:51 | 只看該作者
28#
發(fā)表于 2025-3-26 11:44:09 | 只看該作者
29#
發(fā)表于 2025-3-26 14:09:20 | 只看該作者
30#
發(fā)表于 2025-3-26 19:19:07 | 只看該作者
Tobias Singelnstein,Peer Stolleted. A derivation is given for the pressure coefficient. The chapter discusses the problem of two-dimensional steady flow over a periodic-shaped wall both in the linear subsonic and supersonic regimes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新民市| 洛扎县| 霍林郭勒市| 乐昌市| 容城县| 东丰县| 河北省| 陈巴尔虎旗| 大关县| 溧阳市| 滕州市| 富锦市| 塔城市| 新疆| 太仓市| 应城市| 和平区| 台中县| 固镇县| 甘泉县| 时尚| 济宁市| 个旧市| 衡水市| 新余市| 新闻| 清水河县| 札达县| 靖州| 海盐县| 大关县| 屯昌县| 宣汉县| 嵩明县| 正安县| 唐山市| 二连浩特市| 庐江县| 珠海市| 神农架林区| 沈丘县|