找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Basic Fourier Series; Sergei K. Suslov Book 2003 Springer Science+Business Media Dordrecht 2003 Complex analysis.Hyperg

[復(fù)制鏈接]
樓主: Hemochromatosis
31#
發(fā)表于 2025-3-26 23:19:50 | 只看該作者
32#
發(fā)表于 2025-3-27 03:55:12 | 只看該作者
Phasenübergreifende Zusammenfassunggonometric systems, and will establish several convenient tools, such as asymptotics of zeros, which are important for practical investigation of these series in the next chapters. Methods of summation and a few explicit examples of .-Fourier series will be also discussed among other things.
33#
發(fā)表于 2025-3-27 05:37:43 | 只看該作者
34#
發(fā)表于 2025-3-27 12:15:40 | 只看該作者
E-Commerce und digitales Wirtschaften,on of the zeros of basic trigonometric functions, study of their bounds and asymptotics, and numerical examples demonstrating convergence of the .-Fourier series. Most of this material appeared in our joint paper with Bill Gosper [.], who wrote the special Macsyma program “namesum” for numerical eva
35#
發(fā)表于 2025-3-27 14:04:00 | 只看該作者
36#
發(fā)表于 2025-3-27 17:58:10 | 只看該作者
Book 2003 Press that the mathematical community came to realize that there is an alternative approach to the study of c1assical Fourier Analysis, namely, through the theory of c1assical orthogonal polynomials. Little would he know at that time that this little idea of his would help usher in a new and exitin
37#
發(fā)表于 2025-3-28 00:27:03 | 只看該作者
38#
發(fā)表于 2025-3-28 02:34:26 | 只看該作者
https://doi.org/10.1007/978-3-658-12037-5most of the material can be read independently from Chapters 7 and 8, but we assume that the reader is familiar with the investigation of the basic Fourier series in Chapters 5 and 6 and with the evaluation of certain integrals in Chapter 4.
39#
發(fā)表于 2025-3-28 07:29:20 | 只看該作者
40#
發(fā)表于 2025-3-28 11:31:43 | 只看該作者
https://doi.org/10.1007/978-3-322-95223-3s and practically all of their applications still remain “Terra Incognita” at the present stage of the investigation. The subject is rapidly changing and it is reasonable to expect that many more interesting results will be discovered in the future. In conclusion, I would like to outline several directions for further work.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华安县| 康马县| 大石桥市| 新巴尔虎右旗| 五指山市| 邻水| 靖州| 马鞍山市| 信宜市| 克什克腾旗| 博爱县| 西藏| 莱西市| 平昌县| 棋牌| 呼伦贝尔市| 横峰县| 正安县| 卓尼县| 靖江市| 桑日县| 山东| 敦化市| 英德市| 安龙县| 嘉义县| 台安县| 长兴县| 湖口县| 临沭县| 平南县| 大邑县| 稻城县| 都匀市| 高雄县| 临沭县| 鹤山市| 凤阳县| 钟祥市| 双桥区| 甘孜县|