找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Automorphic Representations; With a view toward t Jayce R. Getz,Heekyoung Hahn Textbook 2024 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: frustrate
21#
發(fā)表于 2025-3-25 06:57:46 | 只看該作者
22#
發(fā)表于 2025-3-25 07:41:17 | 只看該作者
23#
發(fā)表于 2025-3-25 13:41:03 | 只看該作者
24#
發(fā)表于 2025-3-25 16:50:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:03:44 | 只看該作者
26#
發(fā)表于 2025-3-26 01:20:06 | 只看該作者
Archimedean Representation Theory,In this chapter, we introduce the main players in the representation theory of real Lie groups. In particular, we define admissible representations, .-modules and infinitesimal characters. The chapter ends with a brief discussion of the Langlands classification.
27#
發(fā)表于 2025-3-26 04:42:09 | 只看該作者
Automorphic Forms,In this chapter, we define automorphic forms and use them to give the general definition of an automorphic representation. We then explain the relationship between discrete automorphic representations and automorphic representations.
28#
發(fā)表于 2025-3-26 08:35:43 | 只看該作者
Unramified Representations,In this chapter, we describe the classification of unramified representations of reductive groups over non-Archimedean local fields. Along the way, we discuss the Satake isomorphism and the Langlands dual group.
29#
發(fā)表于 2025-3-26 14:22:59 | 只看該作者
Non-Archimedean Representation Theory,In this chapter, we explain how general admissible representations are built up out of supercuspidal representations via the process of parabolic induction.
30#
發(fā)表于 2025-3-26 19:02:51 | 只看該作者
The Cuspidal Spectrum,The cuspidal spectrum of . decomposes discretely into a Hilbert space direct sum with finite multiplicities. We give a proof of this fact in this chapter. We also prove that cuspidal automorphic forms are rapidly decreasing in the number field case and are compactly supported in the function field case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 10:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
胶南市| 芦溪县| 明星| 定襄县| 长春市| 巢湖市| 兴业县| 榕江县| 普兰县| 临沭县| 棋牌| 保康县| 通化县| 曲靖市| 海宁市| 宜兰县| 大荔县| 砀山县| 五家渠市| 石渠县| 绥棱县| 兴文县| 达拉特旗| 榆林市| 当涂县| 南部县| 广平县| 阜南县| 嵩明县| 运城市| 寿光市| 香格里拉县| 米林县| 章丘市| 从江县| 江华| 寻甸| 黄大仙区| 阿拉善左旗| 额敏县| 顺义区|