找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Algebraic Topology; Joseph J. Rotman Textbook 1988 Springer-Verlag New York Inc. 1988 Algebraic topology.CW complex.Fun

[復(fù)制鏈接]
樓主: Entangle
41#
發(fā)表于 2025-3-28 17:15:45 | 只看該作者
42#
發(fā)表于 2025-3-28 19:53:19 | 只看該作者
Introduction,out topological spaces and continuous functions into problems about algebraic objects (e.g., groups, rings, vector spaces) and their homomorphisms; the method may succeed when the algebraic problem is easier than the original one. Before giving the appropriate setting, we illustrate how the method w
43#
發(fā)表于 2025-3-29 02:47:28 | 只看該作者
44#
發(fā)表于 2025-3-29 05:47:29 | 只看該作者
Singular Homology,hether a union of .-simplexes in a space . that “ought” to be the boundary of some union of (. + 1)-simplexes in X actually is such a boundary. Consider the case . = 0; a 0-simplex in . is a point. Given two points x., x. ∈ ., they “ought” to be the endpoints of a 1-simplex; that is, there ought to
45#
發(fā)表于 2025-3-29 07:15:30 | 只看該作者
46#
發(fā)表于 2025-3-29 13:05:22 | 只看該作者
Simplicial Complexes,few cases in which we could compute these groups. At this point, however, we would have difficulty computing the homology groups of a space as simple as the torus . = . x .; indeed .(.) is uncountable for every . ≥ 0, so it is conceivable that .(.) is uncountable for every . (we shall soon see that
47#
發(fā)表于 2025-3-29 17:02:52 | 只看該作者
48#
發(fā)表于 2025-3-29 21:45:09 | 只看該作者
Homotopy Groups,s from S. into .. It is thus quite natural to consider (pointed) maps of . into a space .; their homotopy classes will be elements of the . .(., x.). This chapter gives the basic properties of the homotopy groups; in particular, it will be seen that they satisfy every Eilenberg-Steenrod axiom save e
49#
發(fā)表于 2025-3-30 02:10:58 | 只看該作者
9樓
50#
發(fā)表于 2025-3-30 04:43:33 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肇东市| 永善县| 涟水县| 凤山县| 榆中县| 遂溪县| 乌兰察布市| 马尔康县| 黑水县| 黑河市| 杭锦后旗| 八宿县| 安庆市| 尉犁县| 鄂托克前旗| 准格尔旗| 曲阳县| 康乐县| 庆云县| 洛南县| 普宁市| 微博| 奉化市| 大理市| 木里| 萝北县| 盐源县| 乌恰县| 新郑市| 吉首市| 尼木县| 青铜峡市| 招远市| 郑州市| 汉沽区| 万全县| 合作市| 邛崃市| 武邑县| 淮南市| 华安县|