找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Algebraic Topology; Joseph J. Rotman Textbook 1988 Springer-Verlag New York Inc. 1988 Algebraic topology.CW complex.Fun

[復制鏈接]
樓主: Entangle
41#
發(fā)表于 2025-3-28 17:15:45 | 只看該作者
42#
發(fā)表于 2025-3-28 19:53:19 | 只看該作者
Introduction,out topological spaces and continuous functions into problems about algebraic objects (e.g., groups, rings, vector spaces) and their homomorphisms; the method may succeed when the algebraic problem is easier than the original one. Before giving the appropriate setting, we illustrate how the method w
43#
發(fā)表于 2025-3-29 02:47:28 | 只看該作者
44#
發(fā)表于 2025-3-29 05:47:29 | 只看該作者
Singular Homology,hether a union of .-simplexes in a space . that “ought” to be the boundary of some union of (. + 1)-simplexes in X actually is such a boundary. Consider the case . = 0; a 0-simplex in . is a point. Given two points x., x. ∈ ., they “ought” to be the endpoints of a 1-simplex; that is, there ought to
45#
發(fā)表于 2025-3-29 07:15:30 | 只看該作者
46#
發(fā)表于 2025-3-29 13:05:22 | 只看該作者
Simplicial Complexes,few cases in which we could compute these groups. At this point, however, we would have difficulty computing the homology groups of a space as simple as the torus . = . x .; indeed .(.) is uncountable for every . ≥ 0, so it is conceivable that .(.) is uncountable for every . (we shall soon see that
47#
發(fā)表于 2025-3-29 17:02:52 | 只看該作者
48#
發(fā)表于 2025-3-29 21:45:09 | 只看該作者
Homotopy Groups,s from S. into .. It is thus quite natural to consider (pointed) maps of . into a space .; their homotopy classes will be elements of the . .(., x.). This chapter gives the basic properties of the homotopy groups; in particular, it will be seen that they satisfy every Eilenberg-Steenrod axiom save e
49#
發(fā)表于 2025-3-30 02:10:58 | 只看該作者
9樓
50#
發(fā)表于 2025-3-30 04:43:33 | 只看該作者
9樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 19:29
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
自治县| 金华市| 宁城县| 恩平市| 安西县| 阿尔山市| 平顶山市| 临洮县| 化州市| 巴彦淖尔市| 克东县| 沾化县| 兴义市| 乃东县| 三原县| 宜都市| 新沂市| 沁源县| 定日县| 潢川县| 将乐县| 孝义市| 安龙县| 铁力市| 华阴市| 慈溪市| 博湖县| 盐源县| 博兴县| 新宾| 桃江县| 汾阳市| 武汉市| 西乌| 海安县| 乌什县| 洪泽县| 开阳县| 灵台县| 泰和县| 东方市|