找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Excursion through Elementary Mathematics, Volume III; Discrete Mathematics Antonio Caminha Muniz Neto Textbook 2018 Springer Internation

[復(fù)制鏈接]
樓主: 鏟除
11#
發(fā)表于 2025-3-23 12:24:27 | 只看該作者
12#
發(fā)表于 2025-3-23 13:55:44 | 只看該作者
13#
發(fā)表于 2025-3-23 18:32:21 | 只看該作者
Complex Numbers,d the flowering of complex function theory. In this respect, a major first crowning was the proof, by Gauss, of the famous ., which asserts that every polynomial function with complex coefficients has a complex root.
14#
發(fā)表于 2025-3-23 22:50:01 | 只看該作者
On the Factorisation of Polynomials,similar to the unique factorisation of integers. Our purpose in this chapter is to give precise answers to these questions, which shall encompass polynomials with coefficients in ., for some prime integer ..
15#
發(fā)表于 2025-3-24 03:00:57 | 只看該作者
https://doi.org/10.1007/978-3-662-42500-8loping the most elementary algebraic concepts and results on polynomials. To this end, along all that follows we shall write . to denote one of .,. or ., whenever a specific choice of one of these number sets is immaterial.
16#
發(fā)表于 2025-3-24 10:03:49 | 只看該作者
https://doi.org/10.1007/978-3-663-08404-4to solve Vandermonde’ linear systems with no Linear Algebra. In turn, the knowledge of the solutions of such linear systems will allow us to study, in Sect. ., an important particular class of linear recurrence relations, thus partially extending the methods of Section 3.2 of [8].
17#
發(fā)表于 2025-3-24 11:03:34 | 只看該作者
Polynomials,loping the most elementary algebraic concepts and results on polynomials. To this end, along all that follows we shall write . to denote one of .,. or ., whenever a specific choice of one of these number sets is immaterial.
18#
發(fā)表于 2025-3-24 14:54:39 | 只看該作者
Interpolation of Polynomials,to solve Vandermonde’ linear systems with no Linear Algebra. In turn, the knowledge of the solutions of such linear systems will allow us to study, in Sect. ., an important particular class of linear recurrence relations, thus partially extending the methods of Section 3.2 of [8].
19#
發(fā)表于 2025-3-24 19:48:30 | 只看該作者
Antonio Caminha Muniz NetoCombines an in-depth overview of the theory with problems presented at several Mathematical Olympiads around the world.Offers a comprehensive course on problem-solving techniques.Presents a coherent d
20#
發(fā)表于 2025-3-25 01:44:40 | 只看該作者
Problem Books in Mathematicshttp://image.papertrans.cn/a/image/155002.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑龙江省| 苍山县| 青浦区| 栾川县| 台湾省| 通江县| 土默特右旗| 浦北县| 灌阳县| 苍南县| 太仆寺旗| 庐江县| 五河县| 安平县| 亚东县| 蕲春县| 静乐县| 合阳县| 凤阳县| 西贡区| 县级市| 上虞市| 阿勒泰市| 英山县| 于田县| 信丰县| 秦皇岛市| 凤山市| 衡阳县| 龙胜| 宜丰县| 化州市| 寻甸| 扎赉特旗| 华容县| 华亭县| 绍兴县| 上栗县| 疏附县| 灵石县| 湘潭市|