找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Excursion through Elementary Mathematics, Volume II; Euclidean Geometry Antonio Caminha Muniz Neto Textbook 2018 Springer International

[復(fù)制鏈接]
樓主: 領(lǐng)口
21#
發(fā)表于 2025-3-25 06:14:35 | 只看該作者
22#
發(fā)表于 2025-3-25 07:35:46 | 只看該作者
23#
發(fā)表于 2025-3-25 11:48:39 | 只看該作者
Lohnpolitik in einem Ver?nderten Umfeldaim at developing a set of computational tools that allow us to successfully approach metric problems for which the methods developed so far are useless. We shall refer to the systematic use of such tools in geometric problems as the ..
24#
發(fā)表于 2025-3-25 17:30:54 | 只看該作者
https://doi.org/10.1007/978-3-662-28938-9ry. In this sense, we shall try to emphasize the use of vectors as being, at the same time, alternative and complementary to the synthetic and cartesian methods. It is within this spirit that we shall use vectors to revisit several previously obtained results; in particular, we call the reader’s att
25#
發(fā)表于 2025-3-25 23:52:44 | 只看該作者
26#
發(fā)表于 2025-3-26 00:37:20 | 只看該作者
27#
發(fā)表于 2025-3-26 08:03:26 | 只看該作者
Zur psychischen Struktur und Psychodynamikhe important concept of ., which encompasses prisms and pyramids, and apply Girard’s theorem to prove the celebrated ., which asserts that the . of every convex polyhedron is equal to 2. The chapter finishes with using Euler’s theorem to obtain the classification of all . polyhedra, and showing that
28#
發(fā)表于 2025-3-26 12:04:51 | 只看該作者
29#
發(fā)表于 2025-3-26 16:18:20 | 只看該作者
30#
發(fā)表于 2025-3-26 17:51:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 02:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵宝市| 佛冈县| 天水市| 青海省| 大新县| 固镇县| 云霄县| 宁阳县| 常州市| 兴和县| 新密市| 新疆| 九台市| 永福县| 阳春市| 博野县| 石嘴山市| 桓台县| 永德县| 万安县| 台山市| 哈巴河县| 永德县| 灵丘县| 婺源县| 平果县| 台湾省| 澄城县| 东乡| 社会| 新绛县| 内黄县| 鄱阳县| 扎兰屯市| 庆元县| 石城县| 东安县| 汾阳市| 枞阳县| 兴山县| 樟树市|