找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Algebraic Geometric Approach to Separation of Variables; Konrad Sch?bel Book 2015 Springer Fachmedien Wiesbaden GmbH 2015 Killing tenso

[復(fù)制鏈接]
樓主: 信賴
21#
發(fā)表于 2025-3-25 04:42:50 | 只看該作者
22#
發(fā)表于 2025-3-25 10:00:03 | 只看該作者
The generalisation: a solution for spheres of arbitrary dimension, which gives rise to a Lie bracket and hence to a Lie algebra generated by Killing tensors. On one hand, we can use the metric to identify the symmetric bilinear form K.. with a symmetric endomorphism ..
23#
發(fā)表于 2025-3-25 13:58:38 | 只看該作者
Von der Schallempfindung im allgemeinen the corresponding algebraic curvature tensors. To this end, we substitute (0.7) into (0.2) and both into (0.3) and then use the representation theory for general linear groups to get rid of the dependence on the base point in the manifold.
24#
發(fā)表于 2025-3-25 17:36:47 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:15 | 只看該作者
26#
發(fā)表于 2025-3-26 03:38:07 | 只看該作者
The proof of concept: a complete solution for the 3-dimensional sphere,Given a scalar product . on ., we can raise and lower indices. The symmetries (0.6a) and (0.6b) then allow us to regard an algebraic curvature tensor . on . as a symmetric endomorphism . on the space ?.. of 2-forms on . . Since we will frequently change between both interpretations, we denote endomorphisms by the same letter in boldface.
27#
發(fā)表于 2025-3-26 04:39:33 | 只看該作者
28#
發(fā)表于 2025-3-26 09:50:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:34:27 | 只看該作者
Specimen Collection and Analysisn burns (.), and burn wounds have figured prominently in wound-healing studies. One of the difficulties with human burn wound studies, however, has been the uncontrolled circumstance under which a patient acquires the burn wound: What was the temperature? What was the timing? What was the depth or extent?
30#
發(fā)表于 2025-3-26 20:18:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌云县| 土默特左旗| 长治县| 都昌县| 广州市| 隆尧县| 湖州市| 南皮县| 甘泉县| 呼和浩特市| 夏河县| 始兴县| 安溪县| 五大连池市| 淅川县| 邹城市| 阳春市| 集贤县| 郎溪县| 弋阳县| 彰武县| 商洛市| 拜城县| 克什克腾旗| 响水县| 安化县| 隆尧县| 饶阳县| 响水县| 辽阳县| 苏尼特左旗| 贵州省| 河曲县| 尉氏县| 南郑县| 巴中市| 吉木萨尔县| 济南市| 汪清县| 东城区| 梅河口市|