找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Almost Periodicity, Chaos, and Asymptotic Equivalence; Marat Akhmet Book 2020 Springer Nature Switzerland AG 2020 Chaos.Li-Yorke Chaos.Alm

[復(fù)制鏈接]
樓主: 并排一起
31#
發(fā)表于 2025-3-26 23:00:31 | 只看該作者
Exponentially Dichotomous Linear Systems of Differential Equations with Piecewise Constant Argumenteen made in such a way that further construction of the theory of differential equations will follow the structure of that for ordinary differential equations. All the results are illustrated with examples.
32#
發(fā)表于 2025-3-27 03:58:22 | 只看該作者
33#
發(fā)表于 2025-3-27 06:35:02 | 只看該作者
34#
發(fā)表于 2025-3-27 12:13:05 | 只看該作者
Developments in Applied Spectroscopyrke and Pyragas control methods are utilized to stabilize almost periodic motions. A Duffing oscillator is considered to show the effectiveness of our technique, and simulations that support the theoretical results are depicted.
35#
發(fā)表于 2025-3-27 16:01:31 | 只看該作者
Homoclinic Chaos and Almost Periodicity,rke and Pyragas control methods are utilized to stabilize almost periodic motions. A Duffing oscillator is considered to show the effectiveness of our technique, and simulations that support the theoretical results are depicted.
36#
發(fā)表于 2025-3-27 19:12:52 | 只看該作者
37#
發(fā)表于 2025-3-27 23:31:07 | 只看該作者
Discontinuous Almost Periodic Solutions,r systems with impulses, such that they are sufficient to admit discontinuous almost periodic solutions, which are asymptotically stable. Interesting specific cases are under consideration, which can be useful for next developments. The most informative historical aspects of the theory of discontinuous almost periodic solutions are provided.
38#
發(fā)表于 2025-3-28 04:06:00 | 只看該作者
Asymptotic Equivalence of Hybrid Systems,tial equations. It is easy to see that the results are generalizations of Chap. 12 such that if one removes the impulsive parts in equations of this chapter then the results of the last chapter will be obtained.
39#
發(fā)表于 2025-3-28 08:25:43 | 只看該作者
40#
發(fā)表于 2025-3-28 13:19:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 13:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
即墨市| 乐都县| 布尔津县| 南京市| 武鸣县| 大同市| 九龙坡区| 巫山县| 苍南县| 太保市| 新营市| 乐陵市| 武功县| 额济纳旗| 班玛县| 外汇| 济南市| 石泉县| 石台县| 泾阳县| 鹿泉市| 莒南县| 开平市| 宁强县| 定襄县| 平邑县| 成武县| 东乌珠穆沁旗| 从化市| 敦煌市| 奈曼旗| 寻乌县| 施秉县| 广南县| 兴义市| 蒙阴县| 浦江县| 苍山县| 财经| 花垣县| 漯河市|