找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms, Fractals, and Dynamics; Y. Takahashi Book 1995 Plenum Press, New York 1995 Homeomorphism.Maxima.Variance.algorithms

[復(fù)制鏈接]
樓主: VEER
31#
發(fā)表于 2025-3-26 22:56:29 | 只看該作者
32#
發(fā)表于 2025-3-27 04:52:38 | 只看該作者
https://doi.org/10.1007/978-3-642-96014-7ch as recurrent set, nonwandering set and chain recurrent set. In many cases, the restriction of the map to such an invariant set possesses expansivity (or sensitive dependence on initial conditions, see Devaney [D] for the definition). For instance, from a result of Shub [Sh] we see that a diffeomo
33#
發(fā)表于 2025-3-27 08:30:07 | 只看該作者
34#
發(fā)表于 2025-3-27 11:21:39 | 只看該作者
From there to here or here to hereype which commutes only with its powers and has only trivial invariant .-algebras. Here we show that such examples can be obtained more directly using coding ideas. In fact, coding techniques yield results which do not seem obtainable via joinings, e.g. a complete classification of the factor algebr
35#
發(fā)表于 2025-3-27 16:03:33 | 只看該作者
36#
發(fā)表于 2025-3-27 19:17:26 | 只看該作者
https://doi.org/10.1007/978-3-658-08411-0et which has local translation and reflection invariance is a constant time change of the Brownian motion. On the other hand, Kumagai [Kum] introduced a class of Feller diffusions which is invariant under the operation of local rotation. These diffusions are called .-stream diffusions on the Sierpin
37#
發(fā)表于 2025-3-27 23:07:27 | 只看該作者
38#
發(fā)表于 2025-3-28 02:45:20 | 只看該作者
Rousseaus Gesellschaftsvertrag,simple continued fractions case and a generalized case). Relations between continued fractions and the geodesic flows on the modular surface are well-known. For example, Adler and Flatto [1] showed that the continued fraction transformation is obtained as a cross-section map of the geodesic flow. An
39#
發(fā)表于 2025-3-28 06:51:10 | 只看該作者
40#
發(fā)表于 2025-3-28 12:43:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磐安县| 桂林市| 仁布县| 介休市| 崇左市| 合水县| 霸州市| 元朗区| 蓬溪县| 进贤县| 改则县| 涡阳县| 隆德县| 丰城市| 陇川县| 桦南县| 隆安县| 堆龙德庆县| 慈利县| 平山县| 靖安县| 静宁县| 涞水县| 湖北省| 黄陵县| 东至县| 秭归县| 林芝县| 永善县| 丰顺县| 长宁区| 团风县| 明溪县| 泽库县| 温宿县| 乌恰县| 成安县| 宁安市| 宁城县| 奉化市| 东辽县|