找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms in Real Algebraic Geometry; Saugata Basu,Richard Pollack,Marie-Franco?ise Roy Textbook 20031st edition Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: 調(diào)停
11#
發(fā)表于 2025-3-23 09:44:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:50 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:49:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:07:49 | 只看該作者
16#
發(fā)表于 2025-3-24 09:59:57 | 只看該作者
Computing Roadmaps and Connected Components of Semi-algebraic Sets,s provided by cylindrical decomposition in Chapter 12 for the problem of deciding connectivity properties of semi-algebraic sets (single exponential in the number of variables rather than doubly exponential).
17#
發(fā)表于 2025-3-24 14:19:01 | 只看該作者
Therapieoptionen bei der Schmerzbehandlung,Since a real univariate polynomial does not always have real roots, a very natural algorithmic problem, is to design a method to count the number of real roots of a given polynomial (and thus decide whether it has any). The “real root counting problem” plays a key role in nearly all the “algorithms in real algebraic geometry” studied in this book.
18#
發(fā)表于 2025-3-24 15:40:49 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:47 | 只看該作者
20#
發(fā)表于 2025-3-25 00:56:01 | 只看該作者
Introduction,Since a real univariate polynomial does not always have real roots, a very natural algorithmic problem, is to design a method to count the number of real roots of a given polynomial (and thus decide whether it has any). The “real root counting problem” plays a key role in nearly all the “algorithms in real algebraic geometry” studied in this book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博野县| 游戏| 桑日县| 湘阴县| 正安县| 射阳县| 尉犁县| 章丘市| 武功县| 宁远县| 通化市| 板桥市| 原阳县| 阜新市| 奇台县| 平湖市| 陇南市| 金华市| 水富县| 呼和浩特市| 南华县| 卢湾区| 绥江县| 清河县| 班玛县| 平顺县| 阳新县| 梨树县| 连云港市| 深水埗区| 桂阳县| 绩溪县| 兴业县| 贡山| 巴林左旗| 蕲春县| 会东县| 德令哈市| 瑞丽市| 合作市| 历史|