找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms in Algebraic Geometry and Applications; Laureano González-Vega,Tomás Recio Conference proceedings 1996 Birkh?user Verlag, P.O.

[復制鏈接]
樓主: deliberate
41#
發(fā)表于 2025-3-28 18:06:06 | 只看該作者
42#
發(fā)表于 2025-3-28 21:37:39 | 只看該作者
Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula,e is the linear form . associating to . (reduced modulo .) its coefficient of degree . - 1 (where . is the degree of .). When the polynomial . has only simple roots the Kronecker symbol (or global residue) of . is the number . and the signature of the quadratic form .(..) is again the Cauchy index of ..
43#
發(fā)表于 2025-3-29 01:17:47 | 只看該作者
44#
發(fā)表于 2025-3-29 04:29:33 | 只看該作者
Mixed monomial bases, the Newton polytopes .. := conv(.. ) . The objective of this note is to construct explicit .-bases for A, using the combinatorial technique of mixed subdivisions of the Minkowski sum . := .. + ... + ...
45#
發(fā)表于 2025-3-29 10:45:17 | 只看該作者
46#
發(fā)表于 2025-3-29 14:57:56 | 只看該作者
47#
發(fā)表于 2025-3-29 19:00:47 | 只看該作者
https://doi.org/10.1007/978-3-322-93570-0te set of parameters defines the status of the joint. For example, for a rotary joint the rotation angle fully defines the joint. The independent parameters of the joints will be called the . of the mechanism.
48#
發(fā)表于 2025-3-29 21:38:57 | 只看該作者
Studien zur Schul- und Bildungsforschunggions) that yield identical aspects. The change in aspect at the boundary between regions is called a visual event. The maximal regions and the associated aspects form the nodes of an aspect graph, whose arcs correspond to the visual event boundaries between adjacent regions.
49#
發(fā)表于 2025-3-30 00:14:48 | 只看該作者
https://doi.org/10.1007/978-3-322-93570-0ety of displacements and give its multiplicity, which allows us to bound the number of solutions in the direct kinematic problem of a parallel robot and in the problem of reconstruction from points in vision.
50#
發(fā)表于 2025-3-30 06:54:10 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 19:33
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
绥江县| 沙田区| 秀山| 老河口市| 五常市| 达孜县| 梧州市| 永城市| 绍兴市| 太原市| 平度市| 东乌珠穆沁旗| 安阳县| 厦门市| 土默特左旗| 吴江市| 新宾| 云和县| 东城区| 交城县| 遂平县| 夏邑县| 儋州市| 若尔盖县| 池州市| 高台县| 武鸣县| 灵山县| 长沙市| 和林格尔县| 长兴县| 福鼎市| 石门县| 监利县| 中超| 北川| 安塞县| 交城县| 长汀县| 蒙城县| 旌德县|