找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Solving Common Fixed Point Problems; Alexander J. Zaslavski Book 2018 Springer International Publishing AG, part of Springe

[復(fù)制鏈接]
樓主: 萬能
31#
發(fā)表于 2025-3-26 23:32:20 | 只看該作者
32#
發(fā)表于 2025-3-27 01:43:18 | 只看該作者
Die zeichnerischen Darstellungsweisennder the presence of perturbations. We show that the inexact proximal point method generates an approximate solution if perturbations are summable. We also show that if the perturbations are sufficiently small, then the inexact proximal point method produces approximate solutions.
33#
發(fā)表于 2025-3-27 06:10:30 | 只看該作者
34#
發(fā)表于 2025-3-27 12:19:50 | 只看該作者
35#
發(fā)表于 2025-3-27 16:16:06 | 只看該作者
36#
發(fā)表于 2025-3-27 19:03:05 | 只看該作者
Algorithms for Solving Common Fixed Point Problems978-3-319-77437-4Series ISSN 1931-6828 Series E-ISSN 1931-6836
37#
發(fā)表于 2025-3-28 00:00:20 | 只看該作者
https://doi.org/10.1007/978-3-322-84133-9 approximate solution of the problem using perturbed algorithms. We show that the inexact iterative method generates an approximate solution if perturbations are summable. We also show that if the mappings are nonexpansive and the perturbations are sufficiently small, then the inexact method produces approximate solutions.
38#
發(fā)表于 2025-3-28 04:12:36 | 只看該作者
Die zeichnerischen Darstellungsweisennder the presence of perturbations. We show that the inexact proximal point method generates an approximate solution if perturbations are summable. We also show that if the perturbations are sufficiently small, then the inexact proximal point method produces approximate solutions.
39#
發(fā)表于 2025-3-28 10:17:29 | 只看該作者
B. Hague D.SC., PH.D., F.C.G.I.used. We can divide these performance measures into two categories. The first category evaluates the noise reduction performance while the second one evaluates speech distortion. We also discuss the very convenient mean-square error (MSE) criterion and show how it is related to the performance measu
40#
發(fā)表于 2025-3-28 14:06:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 04:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永平县| 玉溪市| 佳木斯市| 肥乡县| 泗水县| 景谷| 密云县| 应用必备| 桑日县| 吴桥县| 邹城市| 二手房| 东莞市| 乳源| 厦门市| 顺昌县| 日照市| 吉木乃县| 孝昌县| 泽州县| 濉溪县| 镇雄县| 克什克腾旗| 光泽县| 西畴县| 德安县| 楚雄市| 黄平县| 师宗县| 司法| 容城县| 十堰市| 奉节县| 林芝县| 新巴尔虎左旗| 屏边| 确山县| 新晃| 贺兰县| 恭城| 米脂县|