找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Sensor Systems; 14th International S Seth Gilbert,Danny Hughes,Bhaskar Krishnamachari Conference proceedings 2019 Springer N

[復制鏈接]
樓主: Considerate
21#
發(fā)表于 2025-3-25 05:12:02 | 只看該作者
22#
發(fā)表于 2025-3-25 11:00:50 | 只看該作者
Regel Nr. 9 – Breit angelegte Promotionmplified offline optimization problems (closely related to the online one) are NP-hard. To effectively address the involved performance trade-offs, we finally present a variety of adaptive heuristics, assuming different levels of agent information regarding their mobility and energy.
23#
發(fā)表于 2025-3-25 12:47:51 | 只看該作者
24#
發(fā)表于 2025-3-25 19:51:24 | 只看該作者
25#
發(fā)表于 2025-3-25 23:44:08 | 只看該作者
Regel Nr. 2 – Ein durchdachter Aufbaueatures to acquire the fine-grained locations of mobile devices. Our experiments verify that, on a 2G dataset, . achieves a median error 26.0?m, which is almost comparable with two state-of-art RSSI-based techniques [.] 17.0?m and [.] 20.3?m.
26#
發(fā)表于 2025-3-26 01:30:54 | 只看該作者
27#
發(fā)表于 2025-3-26 05:40:18 | 只看該作者
Average Case - Worst Case Tradeoffs for Evacuating 2 Robots from the Disk in the Face-to-Face Modelmize the average case cost of the evacuation algorithm given that the worst case cost does not exceed .. The problem is of special interest with respect to practical applications, since a common objective in search-and-rescue operations is to minimize the average completion time, given that a certai
28#
發(fā)表于 2025-3-26 10:29:14 | 只看該作者
Time- and Energy-Aware Task Scheduling in Environmentally-Powered Sensor Networks,ure uninterrupted operation of the sensor node, we include energy constraints obtained from a common energy-prediction algorithm. Using a standard Integer Linear Programming (ILP) solver, we generate a schedule for task execution satisfying both time and energy constraints. We exemplarily show, how
29#
發(fā)表于 2025-3-26 14:52:41 | 只看該作者
Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer in Ad Hoc Networks,mplified offline optimization problems (closely related to the online one) are NP-hard. To effectively address the involved performance trade-offs, we finally present a variety of adaptive heuristics, assuming different levels of agent information regarding their mobility and energy.
30#
發(fā)表于 2025-3-26 20:45:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
专栏| 长岛县| 洛宁县| 上高县| 浙江省| 临洮县| 清水河县| 灵川县| 上虞市| 集贤县| 龙井市| 同仁县| 通山县| 扎赉特旗| 绿春县| 定安县| 朔州市| 乐陵市| 文水县| 封开县| 府谷县| 洪洞县| 郯城县| 陇南市| 韩城市| 故城县| 静安区| 电白县| 江达县| 札达县| 马边| 牙克石市| 乌拉特中旗| 兖州市| 瑞丽市| 马关县| 岳普湖县| 巢湖市| 宁都县| 垫江县| 昂仁县|