找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Quadratic Matrix and Vector Equations; Federico Poloni Book 2011 The Editor(s) (if applicable) and The Author(s), under exc

[復(fù)制鏈接]
樓主: EVOKE
11#
發(fā)表于 2025-3-23 10:36:00 | 只看該作者
12#
發(fā)表于 2025-3-23 16:37:26 | 只看該作者
Bewertung der Versorgungsanrechte,[100]. The solution of interest is the minimal positive one, whose existence is proved in [100]. Note that for this equation . is an M-matrix [70]: in fact, . by Lemma 1.2.2 this is an M-matrix if and only if . which reduces to . in view of (11). According to the terminology in (5.2.2), the equation
13#
發(fā)表于 2025-3-23 18:59:35 | 只看該作者
https://doi.org/10.1007/978-3-662-26395-2ible. Equations of type (9.1.1) were first introduced by A.I. Lur’e [119] in 1951 (see [13] for an historical overview) and play a fundamental role in systems theory, since properties like dissipativity of linear systems can be characterized via their solvability [2, 3, 4, 157]. This type of equatio
14#
發(fā)表于 2025-3-23 23:36:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:27:55 | 只看該作者
16#
發(fā)表于 2025-3-24 07:47:17 | 只看該作者
,C. Mündliche Verhandlung vom 10. und,e definite . × . matrices. Chapter 11 mention the desirable properties listed by Ando, Li and Mathias [6]; however, these properties do not uniquely define a multivariate matrix geometric mean; thus several different definitions appeared in literature.
17#
發(fā)表于 2025-3-24 14:12:08 | 只看該作者
,Beteiligungsvertr?ge bei VC-Finanzierungen,w algorithms for their solution. The relationships between the different quadratic vector and matrix equations are partially exploited to give better algorithms and unified proofs. However, some details still cannot be embedded elegantly in the theory, and many algorithms for one equation of the cla
18#
發(fā)表于 2025-3-24 17:49:26 | 只看該作者
Algorithms for Quadratic Matrix and Vector Equations978-88-7642-384-0Series ISSN 2239-1460 Series E-ISSN 2532-1668
19#
發(fā)表于 2025-3-24 21:10:17 | 只看該作者
20#
發(fā)表于 2025-3-25 00:54:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
团风县| 达日县| 无极县| 贵南县| 张掖市| 雷波县| 织金县| 柳州市| 舟山市| 蕲春县| 城口县| 樟树市| 宽甸| 海丰县| 无锡市| 阜平县| 九龙坡区| 光泽县| 家居| 德钦县| 亳州市| 泽普县| 南乐县| 柏乡县| 鄂州市| 民乐县| 遵义市| 庄河市| 双牌县| 通州区| 安泽县| 海口市| 鄄城县| 乐平市| 太仆寺旗| 澄城县| 湾仔区| 高淳县| 九台市| 抚州市| 鸡泽县|