找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Discrete Fourier Transform and Convolution; R. Tolimieri,Myoung An,Chao Lu,C. S. Burrus (Profe Book 19891st edition Springe

[復(fù)制鏈接]
樓主: CK828
21#
發(fā)表于 2025-3-25 06:41:50 | 只看該作者
Cooley-Tukey FFT Algorithms,structure of the indexing set . to define mappings of the input and output data vectors into 2-dimensional arrays. Algorithms are then designed, transforming 2-dimensional arrays which, when combined with these mappings, compute the .-point FFT. The stride permutations of chapter 2 play a major role
22#
發(fā)表于 2025-3-25 09:00:27 | 只看該作者
23#
發(fā)表于 2025-3-25 11:40:56 | 只看該作者
Good-Thomas PFA,his multiplicative structure can be applied, in the case of transform size . = ., where . and . are relatively prime, to design a FT algorithm, similar in structure to these additive algorithms, but no longer requiring the twiddle factor multiplication. The idea is due to Good [2] in 1958 and Thomas
24#
發(fā)表于 2025-3-25 17:48:41 | 只看該作者
25#
發(fā)表于 2025-3-25 23:37:36 | 只看該作者
Agarwal-Cooley Convolution Algorithm,hods are required. First as discussed in chapter 6, these algorithms keep the number of required multiplications small, but can require many additions. Also, each size requires a different algorithm. There is no uniform structure that can be repeatedly called upon. In this chapter, a technique simil
26#
發(fā)表于 2025-3-26 03:08:02 | 只看該作者
27#
發(fā)表于 2025-3-26 04:46:24 | 只看該作者
,: The Prime Case,n fact, for a prime ., . is a field and the unit group .(.) is cyclic. Reordering input and output data corresponding to a generator of .(.), the .-point FFT becomes essentially a (.?1) × .?1) . matrix. We require 2(.?1) additions to make this change. Rader computes this skew-circulant action by the
28#
發(fā)表于 2025-3-26 12:01:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:31:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:29:42 | 只看該作者
,: Transform Size , = ,,,f relatively primes. These algorithms start with the multiplicative ring-structure of the indexing set, in the spirit of the Good-Thomas PFA and compute the resulting factorization by combining Rader and Winograd small FFT algorithms. The basic factorization is . where . is a block diagonal matrix w
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五家渠市| 鄂托克前旗| 汾西县| 全南县| 呼玛县| 漠河县| 丁青县| 沂水县| 安顺市| 长春市| 孝昌县| 新巴尔虎右旗| 舒兰市| 赞皇县| 宾阳县| 青浦区| 乾安县| 原平市| 吉安市| 漳州市| 芒康县| 宁强县| 交城县| 罗源县| 鹰潭市| 习水县| 沽源县| 内黄县| 潼南县| 永靖县| 乌拉特前旗| 尚义县| 贺兰县| 廊坊市| 集安市| 德化县| 大宁县| 会泽县| 若尔盖县| 海丰县| 阿瓦提县|