找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms as a Basis of Modern Applied Mathematics; ?árka Ho?ková-Mayerová,Cristina Flaut,Fabrizio Mat Book 2021 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: 紀念性
31#
發(fā)表于 2025-3-27 00:32:51 | 只看該作者
32#
發(fā)表于 2025-3-27 03:15:49 | 只看該作者
33#
發(fā)表于 2025-3-27 06:45:01 | 只看該作者
34#
發(fā)表于 2025-3-27 10:33:22 | 只看該作者
Kein Mensch, nur Mensch oder Person?ly the accuracy of numerical computation is good in some regions of the domain while in some other regions it may not be so good or even may be considered bad. Special care is needed to tackle the low accuracy in the later regions so that the overall accuracy of the domain is improved and is compara
35#
發(fā)表于 2025-3-27 15:59:31 | 只看該作者
36#
發(fā)表于 2025-3-27 19:32:13 | 只看該作者
https://doi.org/10.1007/978-3-658-15692-3mance of four state-of-the-art multi-objective evolutionary algorithms representing two seminal approaches in recent research: indicator-based and decomposition-based. The algorithms are compared with respect to six convergence and diversity performance measures, including the recently proposed IGD+
37#
發(fā)表于 2025-3-28 00:18:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:34:34 | 只看該作者
https://doi.org/10.1007/978-3-642-92462-0th these numbers, we generalized Fibonacci and Lucas numbers by using an arbitrary binary relation over the real fields instead of addition of the real numbers and we give properties of the new obtained sequences. Moreover, by using some relations between Fibonacci and Lucas numbers, we provide a me
39#
發(fā)表于 2025-3-28 06:52:24 | 只看該作者
https://doi.org/10.1007/978-3-642-92462-0e, R., . ., we provide some examples of finite bounded commutative BCK-algebras, using the Wajsberg algebra associated to a bounded commutative BCK-algebra. This method is an alternative to the Iseki’s construction, since by Iseki’s extension some properties of the obtained algebras are lost.
40#
發(fā)表于 2025-3-28 12:52:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜川县| 许昌县| 咸丰县| 习水县| 利辛县| 巨鹿县| 台中县| 陇西县| 肇庆市| 天水市| 湾仔区| 昭通市| 扬州市| 酒泉市| 栖霞市| 卫辉市| 连州市| 永年县| 嵊泗县| 穆棱市| 黔南| 龙江县| 满洲里市| 阿尔山市| 精河县| 安新县| 毕节市| 元谋县| 桂阳县| 湄潭县| 天镇县| 延川县| 资兴市| 剑河县| 峨眉山市| 资溪县| 双城市| 吉木乃县| 灵宝市| 德钦县| 玉树县|