找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Models for the Web-Graph; 7th International Wo Ravi Kumar,Dandapani Sivakumar Conference proceedings 2010 The Editor(s) (if

[復(fù)制鏈接]
樓主: gratuity
31#
發(fā)表于 2025-3-26 23:00:09 | 只看該作者
A Sharp PageRank Algorithm with Applications to Edge Ranking and Graph Sparsification,e integer .. The improved PageRank algorithm is crucial for computing a quantitative ranking of edges in a given graph. We will use the edge ranking to examine two interrelated problems – graph sparsification and graph partitioning. We can combine the graph sparsification and the partitioning algori
32#
發(fā)表于 2025-3-27 01:51:11 | 只看該作者
Efficient Triangle Counting in Large Graphs via Degree-Based Vertex Partitioning,is to combine the sampling algorithm of [31,32] and the partitioning of the set of vertices into a high degree and a low degree subset respectively as in [1], treating each set appropriately. We obtain a running time . and an . approximation (multiplicative error), where . is the number of vertices,
33#
發(fā)表于 2025-3-27 09:02:57 | 只看該作者
Computing an Aggregate Edge-Weight Function for Clustering Graphs with Multiple Edge Types,ts can be defined by many different metrics and aggregation of these metrics into a single one poses several important challenges, such as recovering this aggregation function from ground-truth, investigating the space of different clusterings, etc. In this paper, we address how to find an aggregati
34#
發(fā)表于 2025-3-27 13:31:49 | 只看該作者
35#
發(fā)表于 2025-3-27 14:07:18 | 只看該作者
36#
發(fā)表于 2025-3-27 19:03:16 | 只看該作者
37#
發(fā)表于 2025-3-28 00:27:57 | 只看該作者
Finding and Visualizing Graph Clusters Using PageRank Optimization, given graph ., we use the personalized PageRank vectors to determine a set of clusters, by optimizing the jumping parameter . subject to several cluster variance measures in order to capture the graph structure according to PageRank. We then give a graph visualization algorithm for the clusters usi
38#
發(fā)表于 2025-3-28 03:21:13 | 只看該作者
39#
發(fā)表于 2025-3-28 06:19:53 | 只看該作者
The Geometric Protean Model for On-Line Social Networks,es are identified with points in Euclidean space, and edges are stochastically generated by a mixture of the relative distance of nodes and a ranking function. With high probability, the GEO-P model generates graphs satisfying many observed properties of OSNs, such as power law degree distributions,
40#
發(fā)表于 2025-3-28 14:15:35 | 只看該作者
Constant Price of Anarchy in Network Creation Games via Public Service Advertising,t to construct a connection graph among themselves. Each node wants to minimize its average or maximum distance to the others, without paying much to construct the network. Many generalizations have been considered, including non-uniform interests between nodes, general graphs of allowable edges, bo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内黄县| 饶阳县| 桃园市| 霞浦县| 筠连县| 逊克县| 鹰潭市| 辽阳市| 个旧市| 肇庆市| 灌云县| 巴青县| 衡阳县| 德清县| 来凤县| 基隆市| 娄底市| 长寿区| 巴楚县| 鹿泉市| 富锦市| 驻马店市| 黄龙县| 定日县| 潮安县| 宜黄县| 安龙县| 岢岚县| 金山区| 家居| 瓦房店市| 南靖县| 乌鲁木齐县| 博客| 常州市| 凯里市| 邻水| 临沂市| 余姚市| 崇义县| 青铜峡市|