找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Models for the Web Graph; 16th International W Konstantin Avrachenkov,Pawe? Pra?at,Nan Ye Conference proceedings 2019 Spring

[復(fù)制鏈接]
樓主: lutein
21#
發(fā)表于 2025-3-25 06:44:06 | 只看該作者
22#
發(fā)表于 2025-3-25 10:55:59 | 只看該作者
,Forschungsans?tze und -ertr?ge,n of formal estimators for these graphs, and a new Maximum Likelihood Estimator with .(.) computational complexity where . is the number of edges in the graph, and requiring only link lengths as input, as compared to all other algorithms which are ..
23#
發(fā)表于 2025-3-25 11:45:23 | 只看該作者
24#
發(fā)表于 2025-3-25 19:04:26 | 只看該作者
https://doi.org/10.1007/978-3-663-20181-6-supervised learning works very well. Specifically, for the Stochastic Block Model in the moderately sparse regime, we prove that popular semi-supervised clustering methods like Label Spreading achieve asymptotically almost exact recovery as long as the fraction of labeled nodes does not go to zero and the average degree goes to infinity.
25#
發(fā)表于 2025-3-25 22:05:11 | 只看該作者
26#
發(fā)表于 2025-3-26 02:07:33 | 只看該作者
27#
發(fā)表于 2025-3-26 07:48:18 | 只看該作者
,The Robot Crawler Model on Complete k-Partite and Erd?s-Rényi Random Graphs,. We consider the maximum, minimum and average number of steps taken by the crawler to visit every vertex of firstly, sparse Erd?s-Rényi random graphs and secondly, complete k-partite graphs. Our work is closely related to a paper of Bonato et al. who introduced the model.
28#
發(fā)表于 2025-3-26 10:07:11 | 只看該作者
29#
發(fā)表于 2025-3-26 16:20:19 | 只看該作者
,Schlu?folgerungen und Ausblick,tiveness of the reduction rules is independent of the underlying graph structure. Finally, we show that high locality is also prevalent in instances from other domains, facilitating a fast computation of minimum hitting sets.
30#
發(fā)表于 2025-3-26 18:00:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤台县| 万山特区| 衡水市| 田阳县| 教育| 夹江县| 衡南县| 海阳市| 科技| 浑源县| 万州区| 虎林市| 甘洛县| 邹平县| 巢湖市| 渝中区| 睢宁县| 景洪市| 郸城县| 扶风县| 祁东县| 年辖:市辖区| 吉首市| 高清| 吴旗县| 嘉善县| 南充市| 河源市| 竹山县| 岳阳市| 中江县| 阳城县| 大荔县| 恭城| 甘泉县| 毕节市| 嘉鱼县| 沿河| 民县| 柳州市| 买车|