找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Data Structures; 11th International S Frank Dehne,Marina Gavrilova,Csaba D. Tóth Conference proceedings 2009 Springer-Verla

[復(fù)制鏈接]
樓主: Halcyon
51#
發(fā)表于 2025-3-30 10:42:09 | 只看該作者
,Die L?sung des Besch?ftigungsproblems,We show that every .-planar clustered graph admits a straight-line .-planar drawing in which each cluster is represented by an axis-parallel rectangle, thus solving a problem posed by Eades, Feng, Lin, and Nagamochi [.].
52#
發(fā)表于 2025-3-30 12:33:04 | 只看該作者
53#
發(fā)表于 2025-3-30 20:12:12 | 只看該作者
Straight-Line Rectangular Drawings of Clustered Graphs,We show that every .-planar clustered graph admits a straight-line .-planar drawing in which each cluster is represented by an axis-parallel rectangle, thus solving a problem posed by Eades, Feng, Lin, and Nagamochi [.].
54#
發(fā)表于 2025-3-30 21:02:29 | 只看該作者
Skip-Splay: Toward Achieving the Unified Bound in the BST Model,We present skip-splay, the first binary search tree algorithm known to have a running time that nearly achieves the unified bound. Skip-splay trees require only .(. lg lg .?+?.(.)) time to execute a query sequence .?=?.. ... ... The skip-splay algorithm is simple and similar to the splay algorithm.
55#
發(fā)表于 2025-3-31 03:06:00 | 只看該作者
56#
發(fā)表于 2025-3-31 05:06:14 | 只看該作者
Plane Graphs with Parity Constraints,beled either even or odd. A graph . on . satisfies the parity constraint of a point .?∈?., if the parity of the degree of . in . matches its label. In this paper we study how well various classes of planar graphs can satisfy arbitrary parity constraints. Specifically, we show that we can always find
57#
發(fā)表于 2025-3-31 12:15:26 | 只看該作者
Online Priority Steiner Tree Problems,s users. For instance, in QoS multicasting, a source needs to efficiently transmit a message to a set of receivers, each requiring support at a different QoS level (e.g., bandwidth). This can be formulated as the . problem: Here, each link of the underlying network is associated with a priority valu
58#
發(fā)表于 2025-3-31 16:38:06 | 只看該作者
59#
發(fā)表于 2025-3-31 18:40:29 | 只看該作者
60#
發(fā)表于 2025-3-31 23:49:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中西区| 诏安县| 佛山市| 吉木乃县| 永吉县| 德令哈市| 贺州市| 雅江县| 石楼县| 内丘县| 佛教| 昌乐县| 肥城市| 磐安县| 广平县| 陆川县| 偃师市| 宝鸡市| 石首市| 武定县| 余江县| 隆林| 潢川县| 永靖县| 枣庄市| 尼玛县| 溧阳市| 秭归县| 西昌市| 酉阳| 修武县| 通山县| 盐津县| 五家渠市| 东明县| 汉川市| 通海县| 聂荣县| 伊宁市| 和龙市| 平原县|