找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmsand Complexity; 12th International C Tiziana Calamoneri,Federico Corò Conference proceedings 2021 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: SCOWL
11#
發(fā)表于 2025-3-23 13:13:53 | 只看該作者
The Multi-budget Maximum Weighted Coverage Problemset . of bins where any . is a subset of elements of .. Each bin . has its own cost, and each element its own weight. An outcome is a vector . where each budget ., for ., can be used to buy a subset of bins . of overall cost at most .. The objective is to maximize the total weight which is defined a
12#
發(fā)表于 2025-3-23 15:22:51 | 只看該作者
A Tight Lower Bound for Edge-Disjoint Paths on Planar DAGspaths . in . such that . connects . to . for each .. Unlike their undirected counterparts which are FPT (parameterized by .) from Graph Minor theory, both the edge-disjoint and vertex-disjoint versions in directed graphs were shown by Fortune et al. (TCS ’80) to be NP-hard for .. This strong hardnes
13#
發(fā)表于 2025-3-23 21:59:40 | 只看該作者
14#
發(fā)表于 2025-3-23 23:58:04 | 只看該作者
On 2-Clubs in Graph-Based Data Clustering: Theory and Algorithm Engineeringre the clusters shall be cliques, we focus on clusters that shall be 2-clubs, that is, subgraphs of diameter at most two. This naturally leads to the two NP-hard problems . (the editing operations are edge insertion and edge deletion) and . (the editing operations are vertex deletions). Answering an
15#
發(fā)表于 2025-3-24 03:25:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:56:45 | 只看該作者
17#
發(fā)表于 2025-3-24 11:34:17 | 只看該作者
,Das Kapital in der Wirtschaft Robinson’s,ordal graph has a vertex that intersects all longest paths (resp., longest cycles). It is an open problem [Balister et al., Comb. Probab. Comput. 2004] whether the same holds for chordal graphs. Similarly, we show that every connected well-partitioned chordal graph admits a (polynomial-time construc
18#
發(fā)表于 2025-3-24 18:07:25 | 只看該作者
19#
發(fā)表于 2025-3-24 21:27:22 | 只看該作者
20#
發(fā)表于 2025-3-25 01:05:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连州市| 呼图壁县| 福海县| 汉沽区| 奉节县| 龙州县| 惠东县| 滨海县| 玉田县| 贵溪市| 剑河县| 本溪| 青阳县| 南投县| 龙游县| 正镶白旗| 曲周县| 揭阳市| 泸州市| 富平县| 腾冲县| 连山| 大名县| 桓仁| 台湾省| 孙吴县| 吉安市| 金湖县| 镇赉县| 大同县| 湘潭县| 鄂温| 措勤县| 威宁| 凌云县| 怀化市| 湘潭市| 高密市| 旬邑县| 资阳市| 耒阳市|