找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Classification in Combinatorial Group Theory; Gilbert Baumslag,Charles F. Miller Book 1992 Springer-Verlag New York, Inc. 1

[復(fù)制鏈接]
樓主: Mottled
31#
發(fā)表于 2025-3-26 23:02:52 | 只看該作者
32#
發(fā)表于 2025-3-27 01:36:46 | 只看該作者
A Tour Around Finitely Presented Infinite Simple Groups,mples of infinite simple groups. For example, let .. be any non-trivial torsion free group. Then, by [3], there exists a torsion free group C., containing .., in which the non-trivial elements of .. are all conjugate to each other. For . ∈ ? define ... = C. and let . = ∪.C.. Then . is an infinite si
33#
發(fā)表于 2025-3-27 08:47:03 | 只看該作者
34#
發(fā)表于 2025-3-27 09:40:30 | 只看該作者
The Geometry of Rewriting Systems: A Proof of the Anick-Groves-Squier Theorem,ssifying space of . down to a quotient complex (typically “small”) of the same homotopy type. If the rewriting system is finite, then the quotient complex has only finitely many cells in each dimension. The proof yields an explicit free resolution of . over .., similar to resolutions obtained by Ani
35#
發(fā)表于 2025-3-27 17:32:11 | 只看該作者
36#
發(fā)表于 2025-3-27 17:54:54 | 只看該作者
37#
發(fā)表于 2025-3-27 22:37:24 | 只看該作者
Problems on Automatic Groups,s merely to establish a time and a first speaker, Bill Thurston soon took the floor and one after another of the participants proposed questions on automatic groups, none of which could be answered at that time. It seemed worthwhile to record those questions asked as a guide to research into automat
38#
發(fā)表于 2025-3-28 04:27:19 | 只看該作者
Algorithms and Classification in Combinatorial Group Theory
39#
發(fā)表于 2025-3-28 08:08:57 | 只看該作者
40#
發(fā)表于 2025-3-28 10:39:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武平县| 山阴县| 浮山县| 江源县| 子长县| 鹰潭市| 嫩江县| 饶阳县| 那曲县| 恩施市| 曲松县| 凤山县| 安吉县| 徐水县| 咸阳市| 石台县| 云林县| 黄平县| 西峡县| 包头市| 汝城县| 武邑县| 科技| 方城县| 宁晋县| 资兴市| 尼玛县| 南靖县| 康乐县| 莲花县| 祁阳县| 原平市| 龙海市| 金华市| 延庆县| 永春县| 重庆市| 扎赉特旗| 潼南县| 习水县| 衡东县|