找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms - ESA 2009; 17th Annual European Amos Fiat,Peter Sanders Conference proceedings 2009 Springer-Verlag Berlin Heidelberg 2009 Sche

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:02:44 | 只看該作者
Output-Sensitive Algorithms for Enumerating Minimal Transversals for Some Geometric Hypergraphs following problems: (i) hitting hyper-rectangles by points in .; (ii) stabbing connected objects by axis-parallel hyperplanes in .; and (iii) hitting half-planes by points. For both the covering and hitting set versions, we obtain incremental polynomial-time algorithms, provided that the dimension . is fixed.
22#
發(fā)表于 2025-3-25 10:53:21 | 只看該作者
23#
發(fā)表于 2025-3-25 14:25:07 | 只看該作者
https://doi.org/10.1007/978-3-642-91741-7 With the same running time, the algorithm can be generalized in two directions. The algoritm is a counting algorithm, and the same ideas can be used to count other objects. For example, one can count the number of independent sets of all possible sizes simultaneously with the same running time. The
24#
發(fā)表于 2025-3-25 17:09:07 | 只看該作者
25#
發(fā)表于 2025-3-25 22:01:26 | 只看該作者
https://doi.org/10.1007/978-3-642-91741-7are adjacent and |.(.)???.(.)|?≥?1 if . and . are at distance 2, for all . and . in .(.). A .-.(2,1)-labeling is an .(2,1)-labeling .:.(.)→{0,...,.}, and the .(2,1)-labeling problem asks the minimum ., which we denote by .(.), among all possible assignments. It is known that this problem is NP-hard
26#
發(fā)表于 2025-3-26 02:20:12 | 只看該作者
27#
發(fā)表于 2025-3-26 05:26:57 | 只看該作者
28#
發(fā)表于 2025-3-26 09:51:04 | 只看該作者
Betriebswirtschaftliche Beitr?ge., .?≤?.?≤?.} where . has at most . nonzeroes per row, we give a .-approximation algorithm. (We assume ., ., ., . are nonnegative.) For any .?≥?2 and .>?0, if .?≠?. this ratio cannot be improved to .???1???., and under the unique games conjecture this ratio cannot be improved to .???.. One key idea
29#
發(fā)表于 2025-3-26 15:52:10 | 只看該作者
30#
發(fā)表于 2025-3-26 20:33:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家川| 南京市| 中宁县| 临潭县| 内江市| 广东省| 河东区| 探索| 邮箱| 望都县| SHOW| 青川县| 渝北区| 同江市| 平江县| 巫山县| 高要市| 桃源县| 龙游县| 临桂县| 东莞市| 大姚县| 建阳市| 太仆寺旗| 铜鼓县| 深水埗区| 盐源县| 龙泉市| 孝感市| 绥德县| 获嘉县| 隆安县| 宾川县| 鞍山市| 五台县| 井冈山市| 德昌县| 荔浦县| 普兰县| 措勤县| 兴海县|