找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic Number Theory; Third International Joe P. Buhler Conference proceedings 1998 Springer-Verlag Berlin Heidelberg 1998 Analysis.P

[復(fù)制鏈接]
樓主: EFFCT
51#
發(fā)表于 2025-3-30 10:49:42 | 只看該作者
52#
發(fā)表于 2025-3-30 12:53:17 | 只看該作者
53#
發(fā)表于 2025-3-30 20:05:37 | 只看該作者
,Parallel implementation of Sch?nhage’s integer GCD algorithm,s implemented in ., a computer algebra library for parallel symbolic computation we have developed..Sch?nhage‘s parallel algorithm is analyzed by using a message-passing model of computation. Experimental results on distributed memory architectures, such as the Intel Paragon, confirm the analysis.
54#
發(fā)表于 2025-3-30 23:24:11 | 只看該作者
The complete analysis of the binary Euclidean algorithm,l analysis of the number of steps, based on a heuristic model and some unproven conjecture. Our methods are quite different, not relying on heuristic hypothesis or conjecture, and more general, since they allow us to study all the parameters of the binary continued fraction expansion.
55#
發(fā)表于 2025-3-31 03:31:23 | 只看該作者
,Cyclotomy primality proving — Recent developments, an overview of cyclotomy from the perspective of the recent research and implementation. We also discuss the drawbacks of the algorithm — the overpolynomial run time and lack of certificates — and mention some open problems which may lead to future improvements.
56#
發(fā)表于 2025-3-31 07:21:48 | 只看該作者
57#
發(fā)表于 2025-3-31 11:33:19 | 只看該作者
0302-9743 , Oregon, USA, in June 1998..The volume presents 46 revised full papers together with two invited surveys. The papers are organized in chapters on gcd algorithms, primality, factoring, sieving, analytic number theory, cryptography, linear algebra and lattices, series and sums, algebraic number field
58#
發(fā)表于 2025-3-31 14:30:11 | 只看該作者
59#
發(fā)表于 2025-3-31 19:22:21 | 只看該作者
60#
發(fā)表于 2025-4-1 01:26:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸水县| 延安市| 双桥区| 西藏| 科技| 奉贤区| 始兴县| 陵川县| 吉木萨尔县| 太原市| 丁青县| 兴国县| 东丽区| 卫辉市| 来凤县| 防城港市| 二连浩特市| 浮梁县| 西贡区| 内乡县| 漳浦县| 司法| 荆门市| 徐水县| 杨浦区| 陆川县| 钦州市| 于田县| 黑水县| 高碑店市| 潮安县| 和静县| 环江| 抚顺县| 通城县| 阿克苏市| 砚山县| 平潭县| 昌黎县| 金坛市| 内黄县|